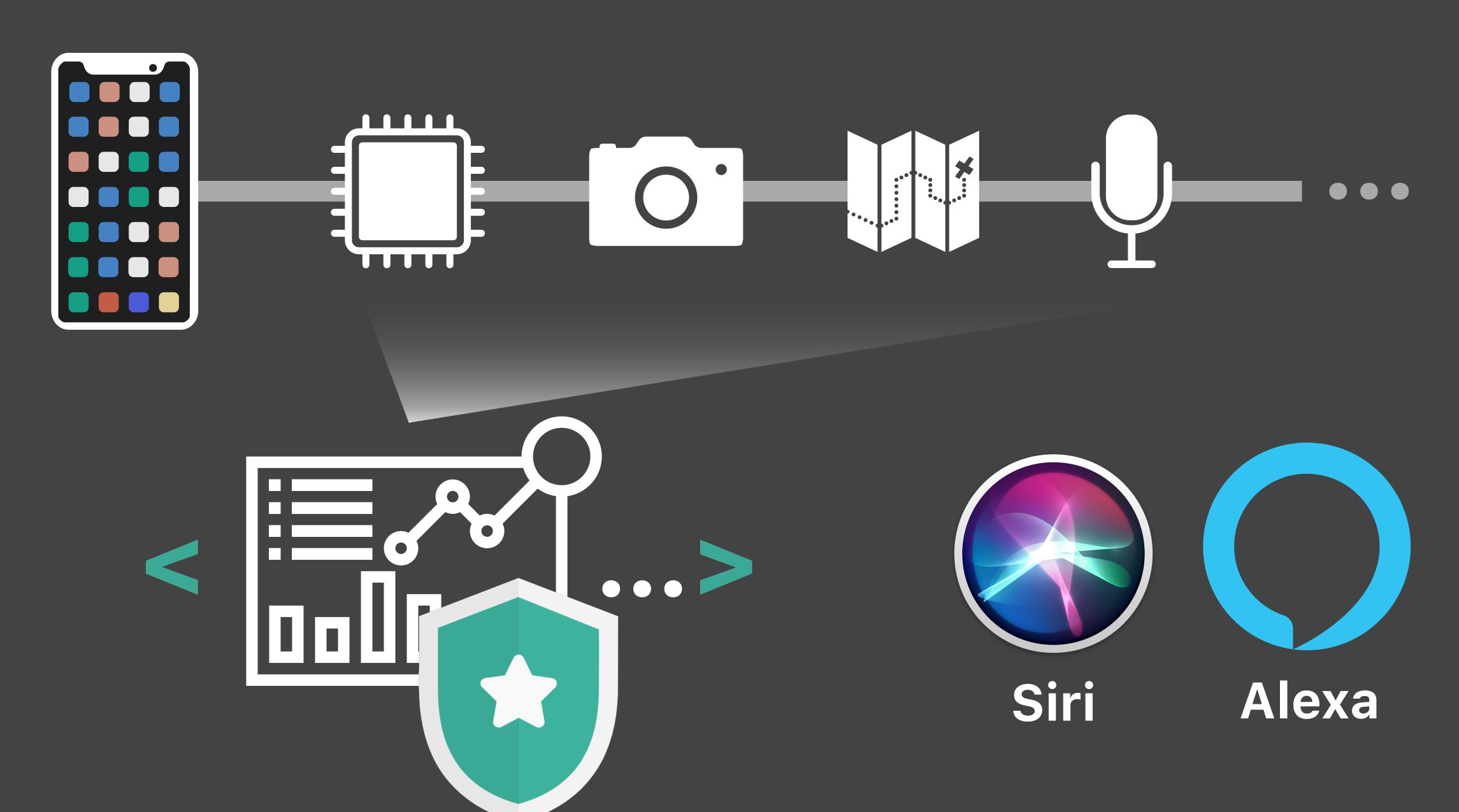
#### INFOCOM'20

# Optimizing Federated Learning on Non-IID Data with Reinforcement Learning

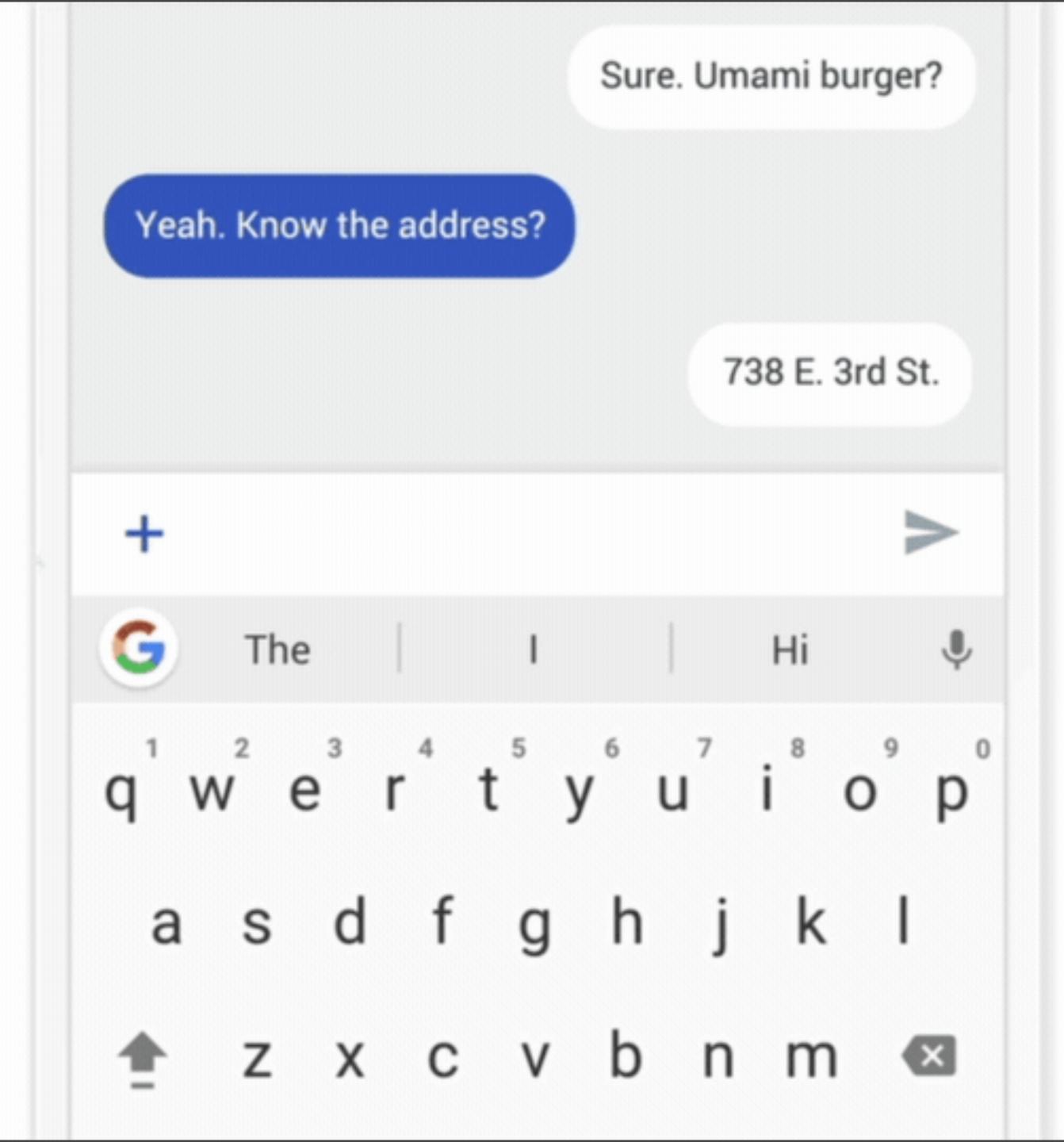
Hao Wang\*, Zakhary Kaplan\*, Di Niu^, Baochun Li\*

\*University of Toronto, ^University of Alberta



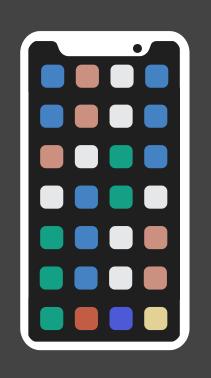
# Machine Learning

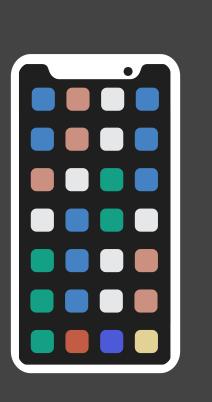
# Federated Learning

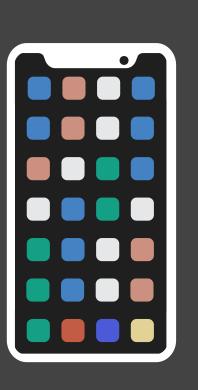


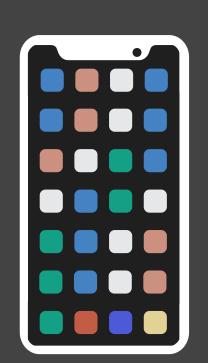
#### Federated Averaging Algorithm (FedAvg)







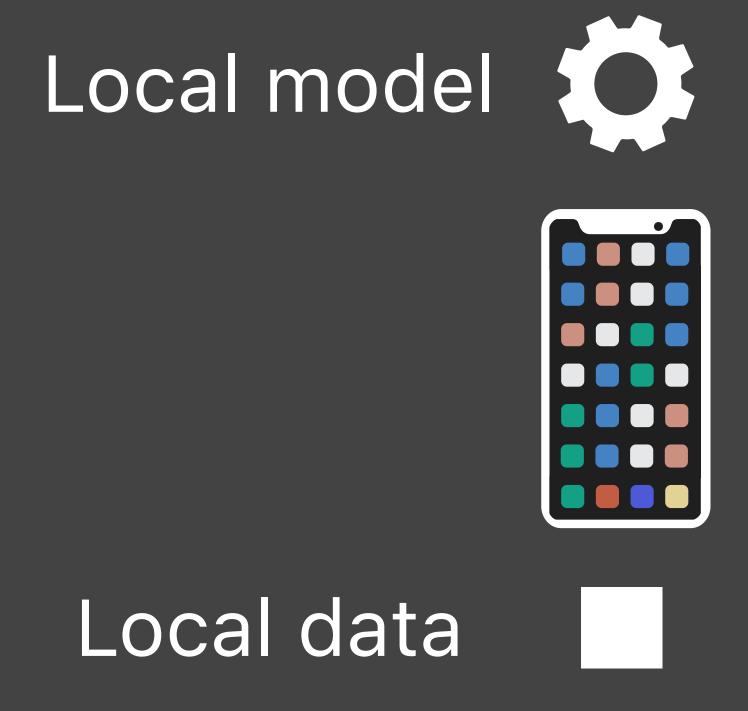


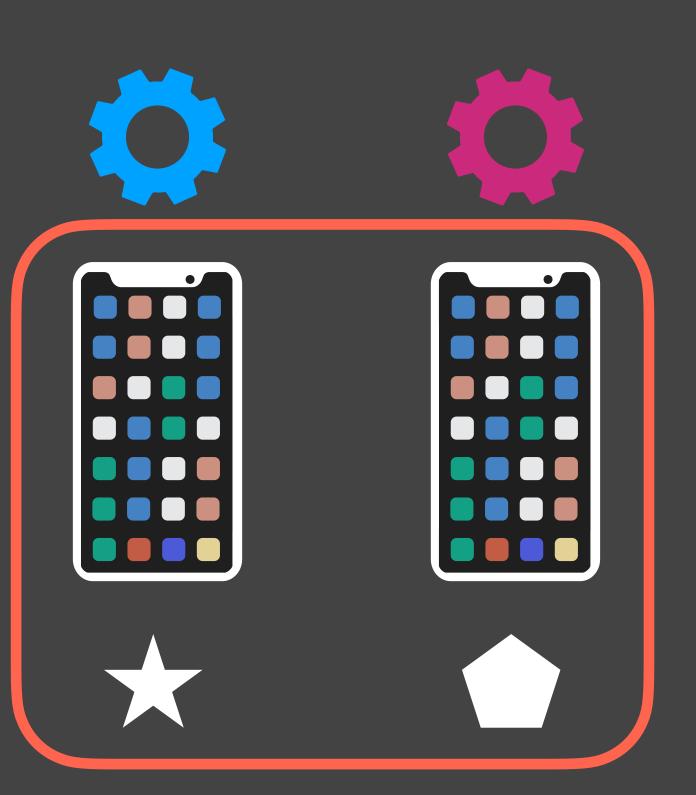


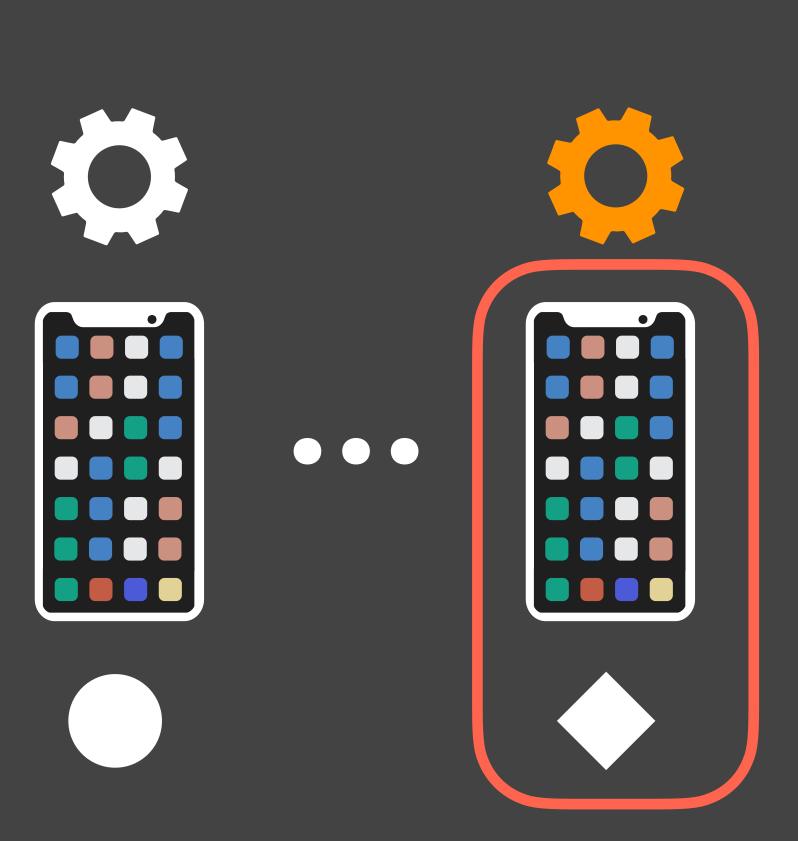


#### Random selection







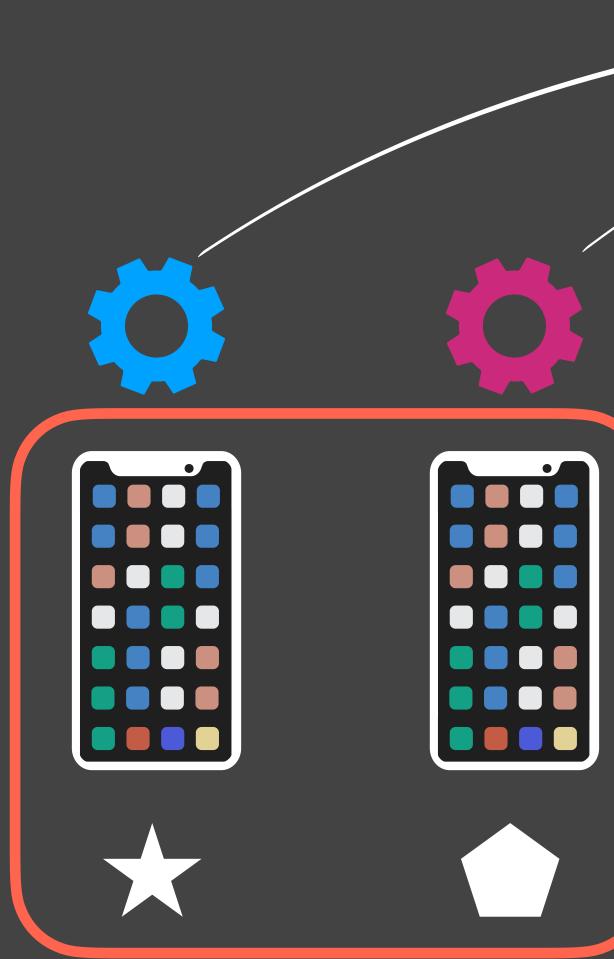


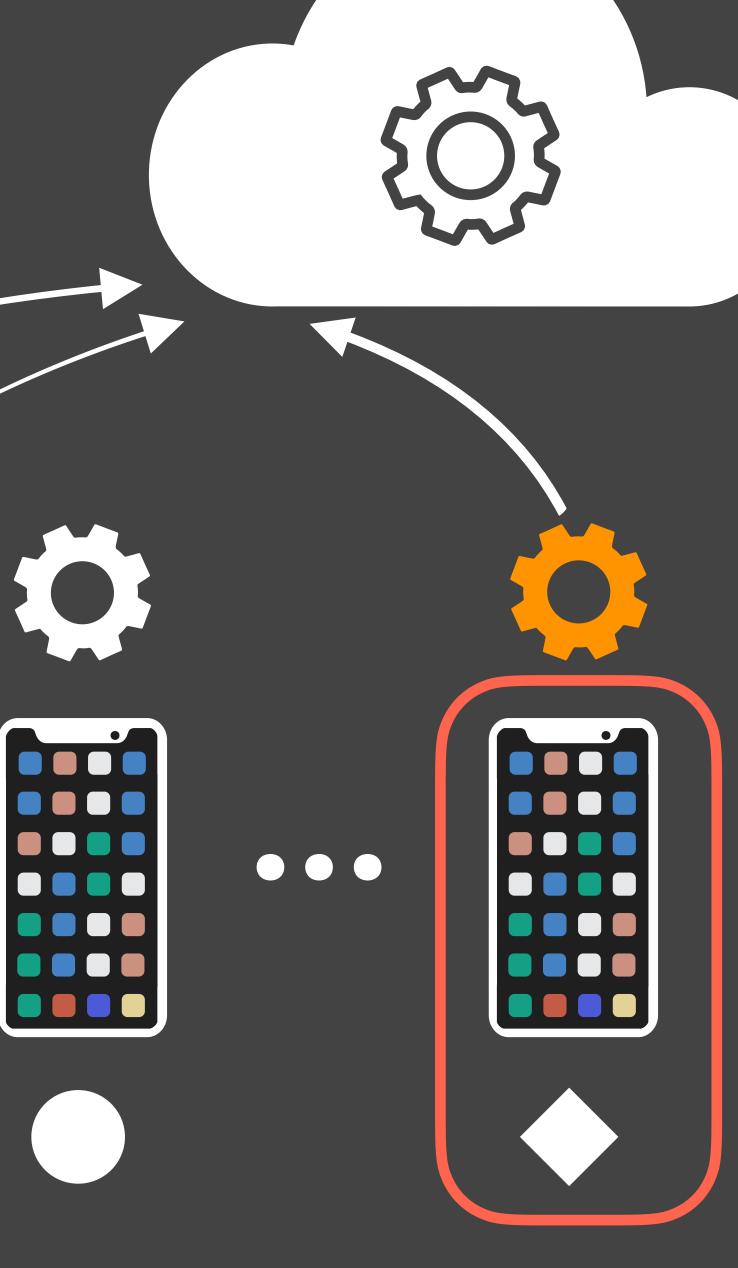
#### Random selection

Local model

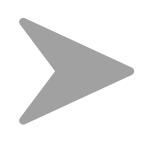


Local data





#### Thank you for the feedback





Local model

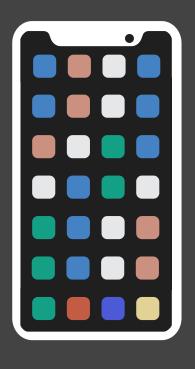


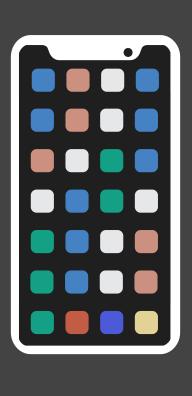


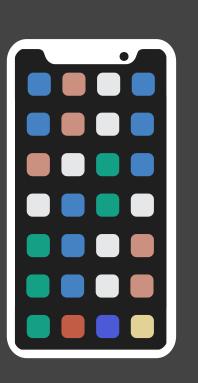


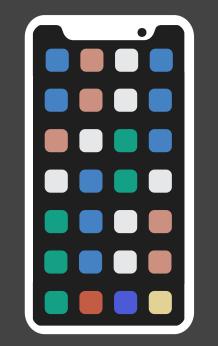




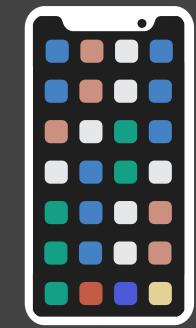








• • •



Local data





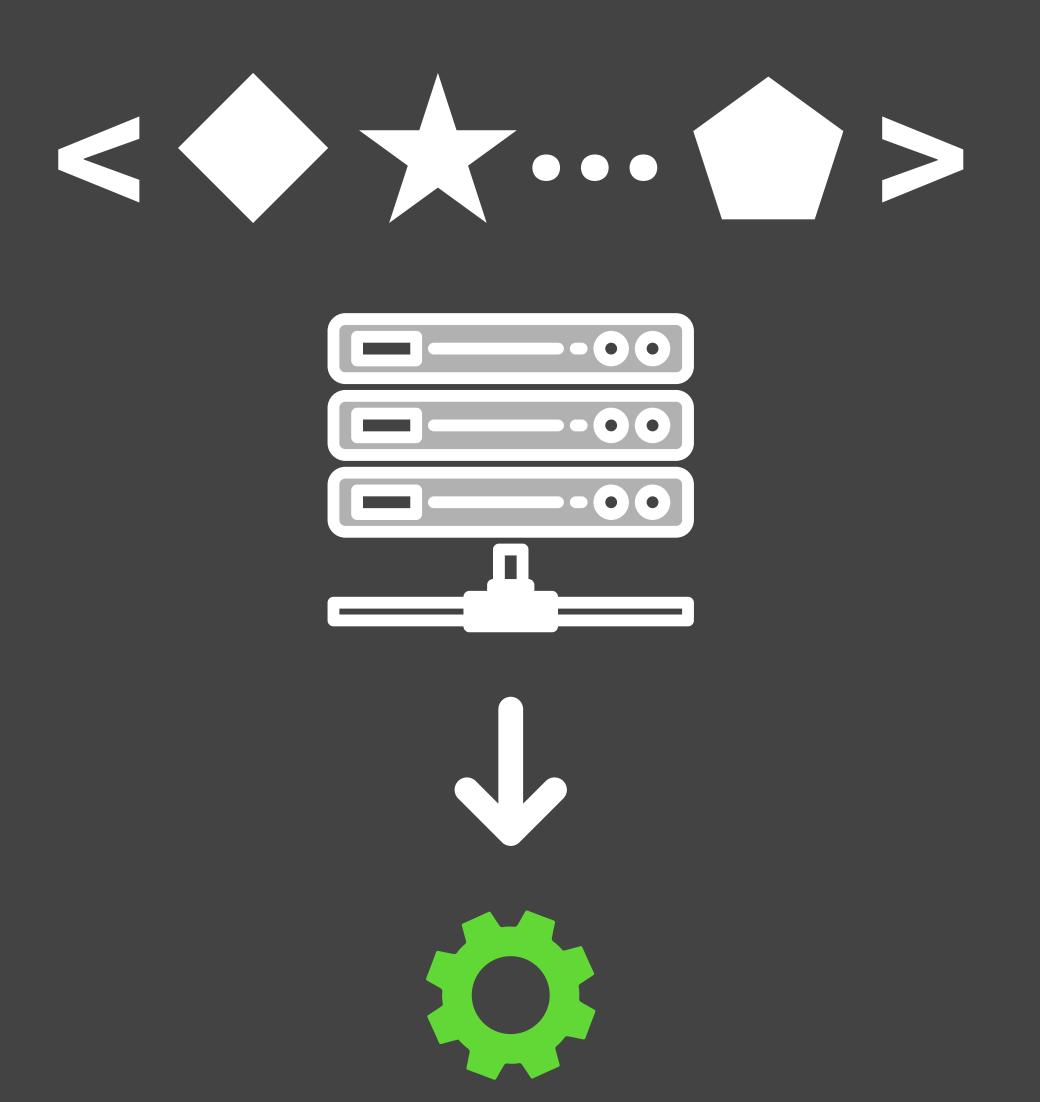


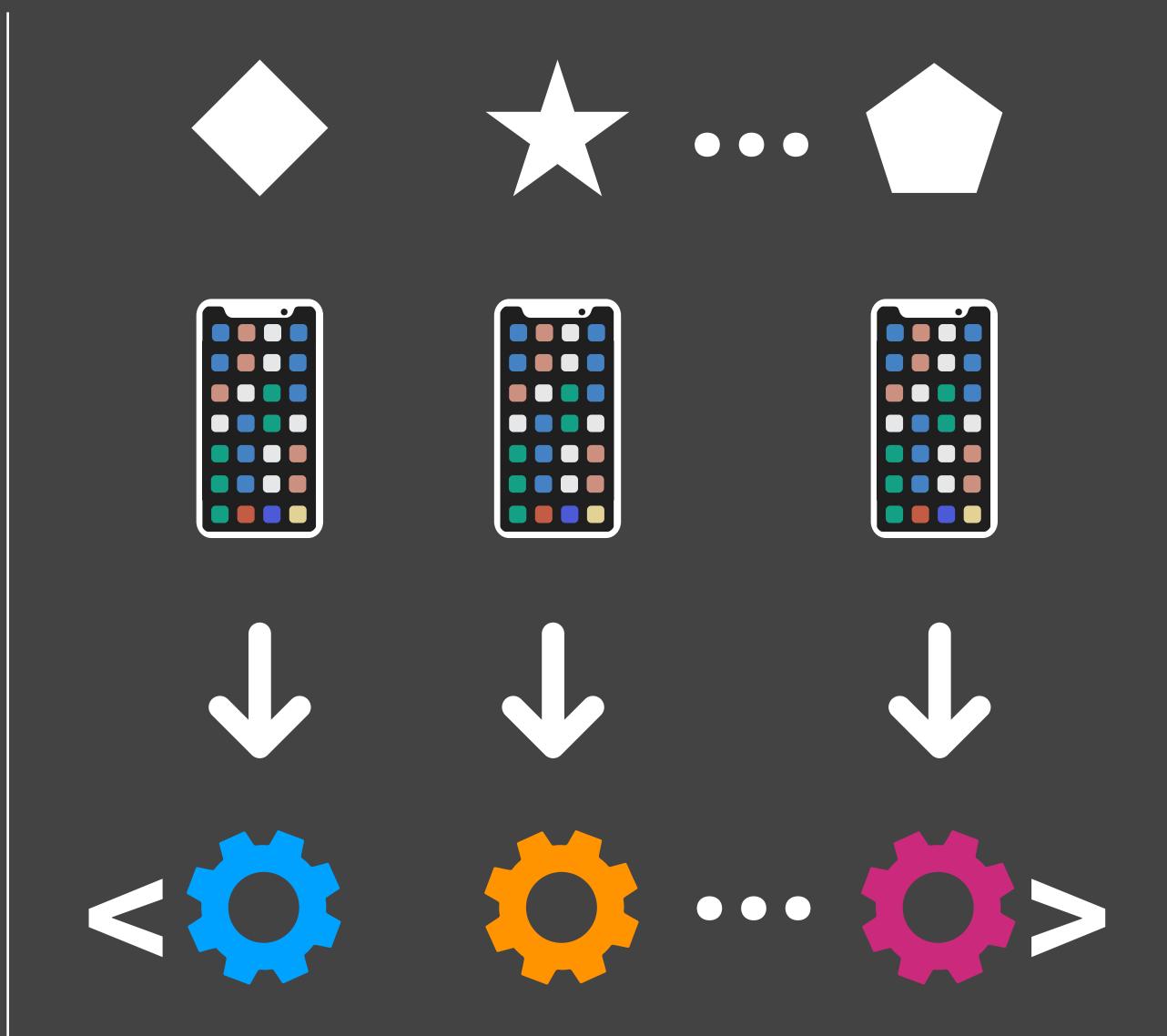


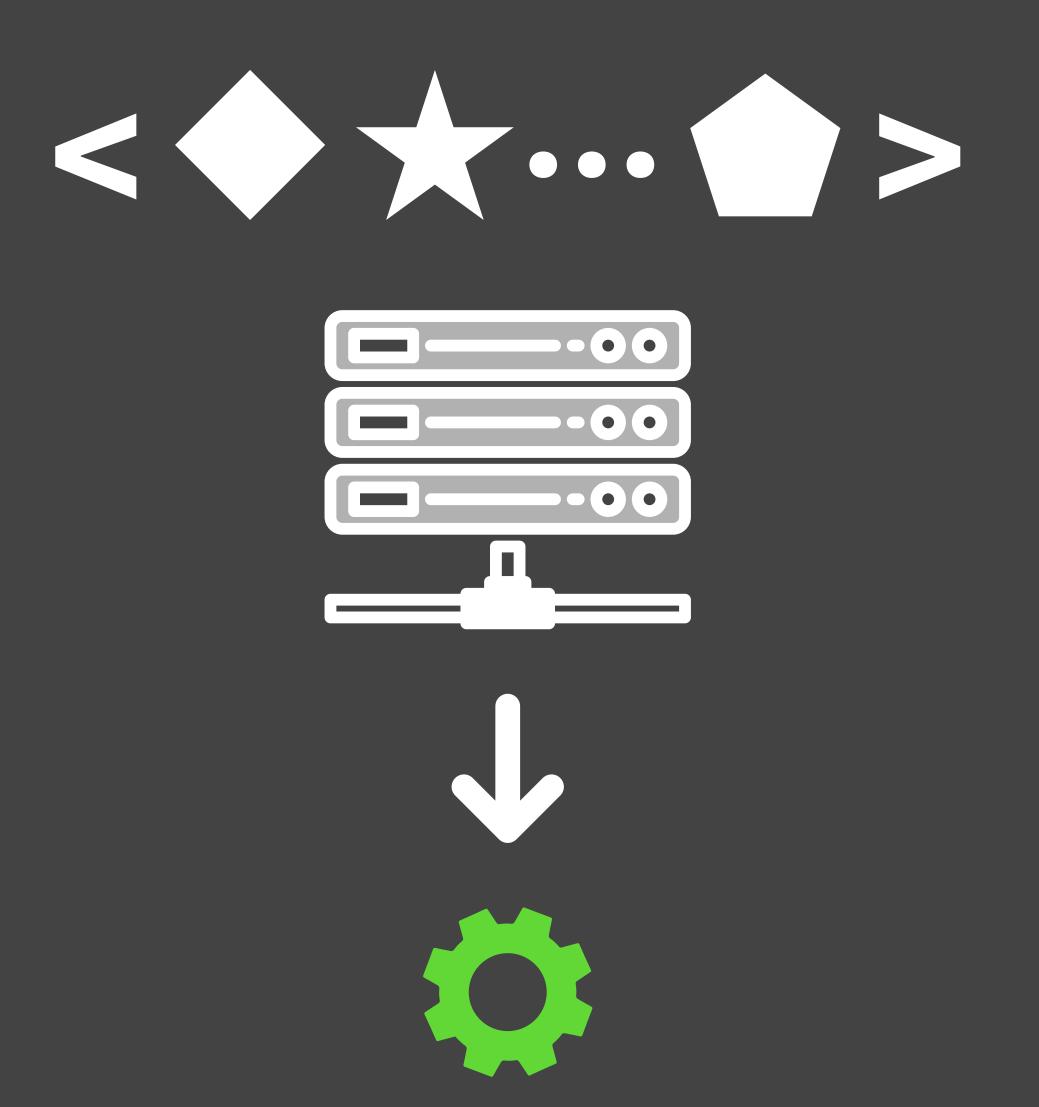


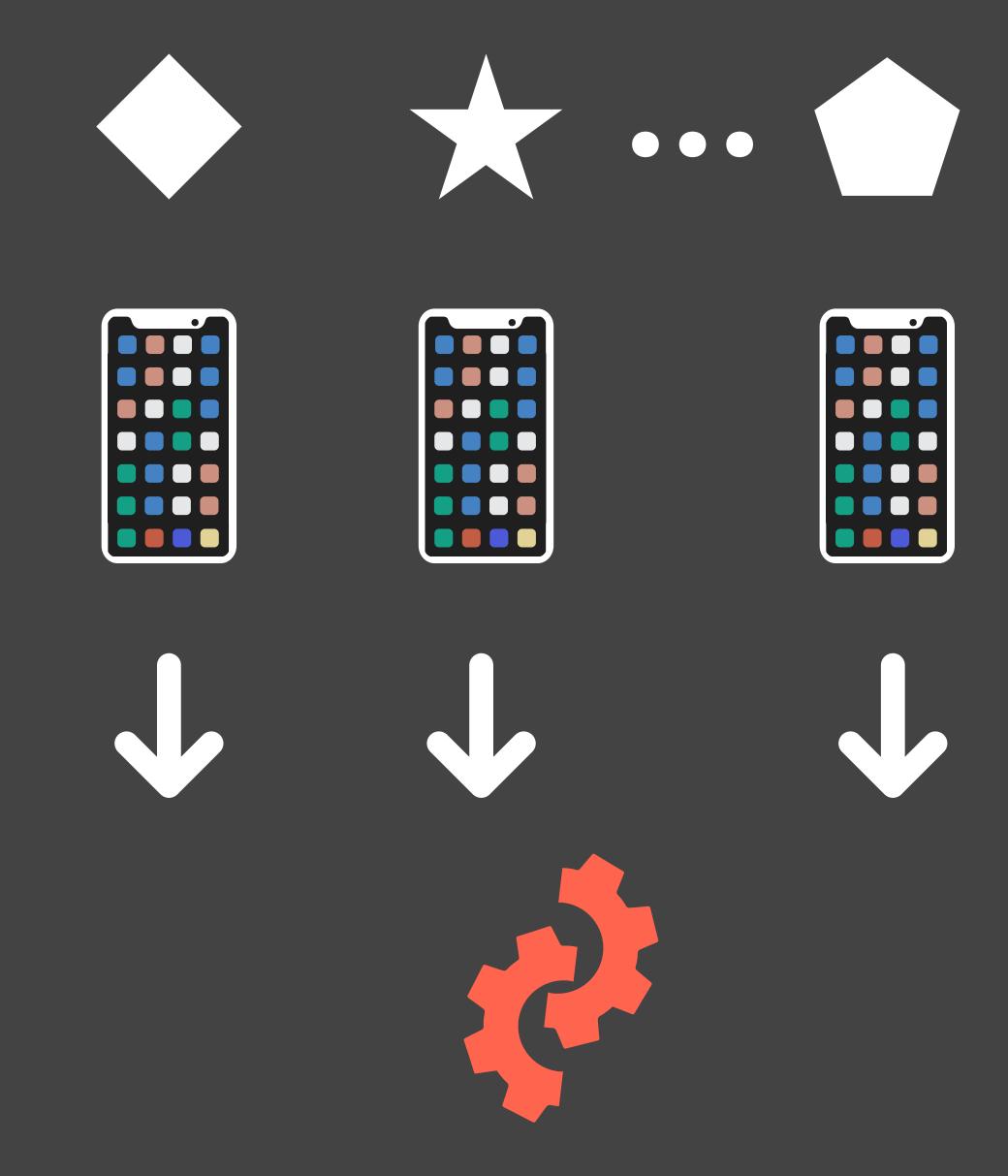
# ML algorithms assume the training data is independent and identically distributed (IID)

# Federated Learning reuses the existing ML algorithms but on non-IID data

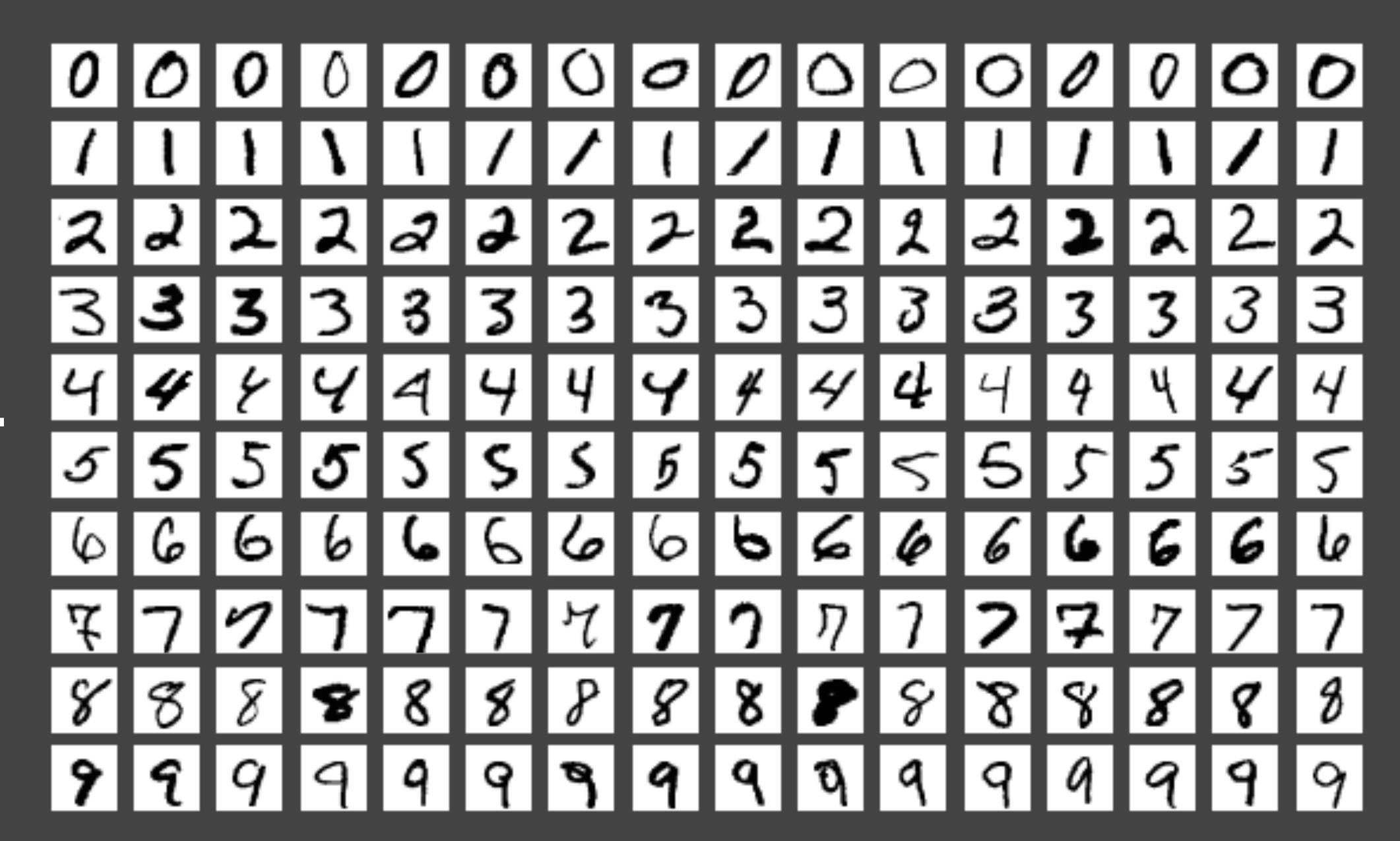




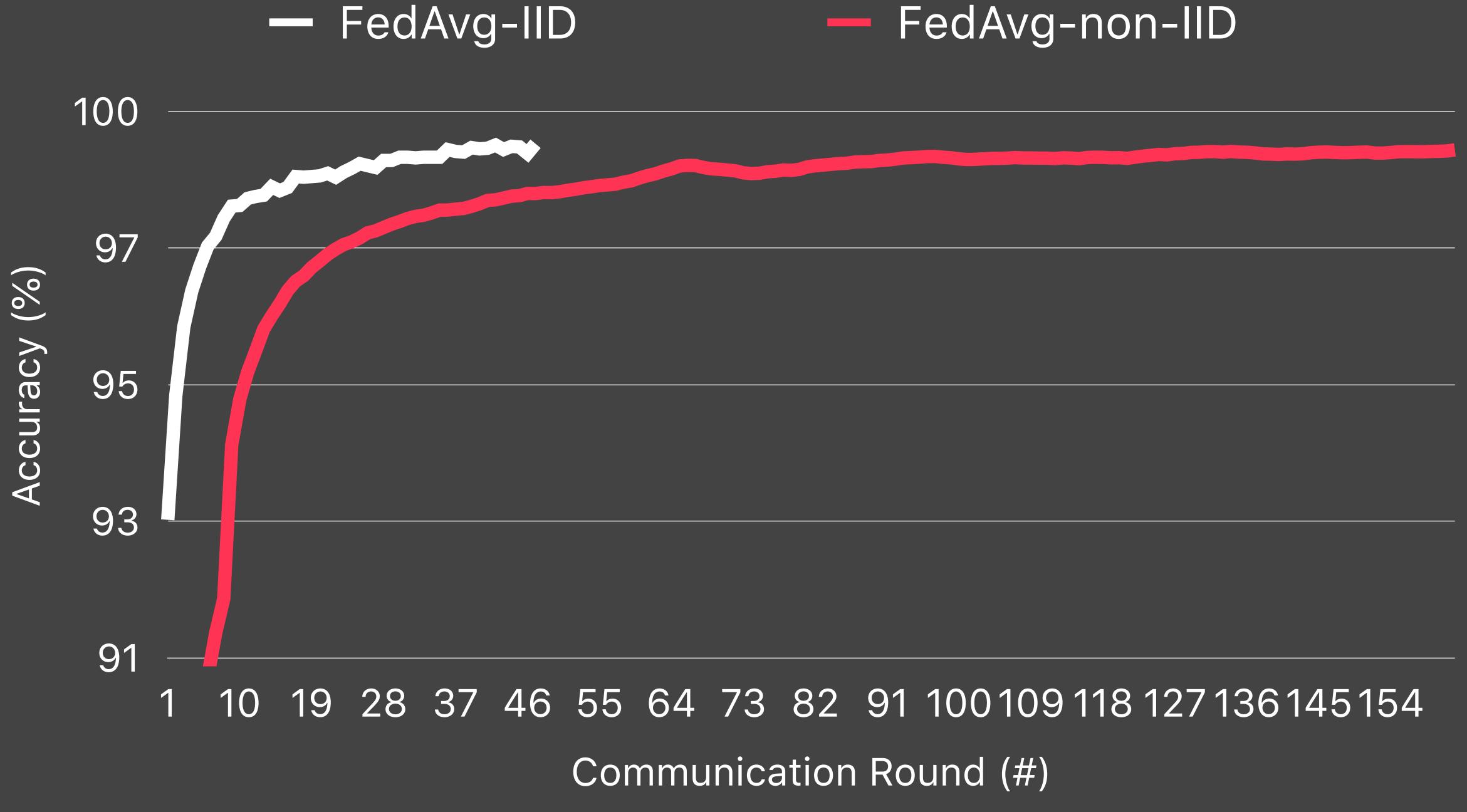




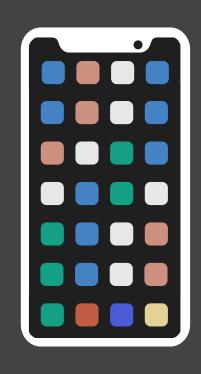
Non-IID data introduces bias into the training and leads to a slow convergence and training failures



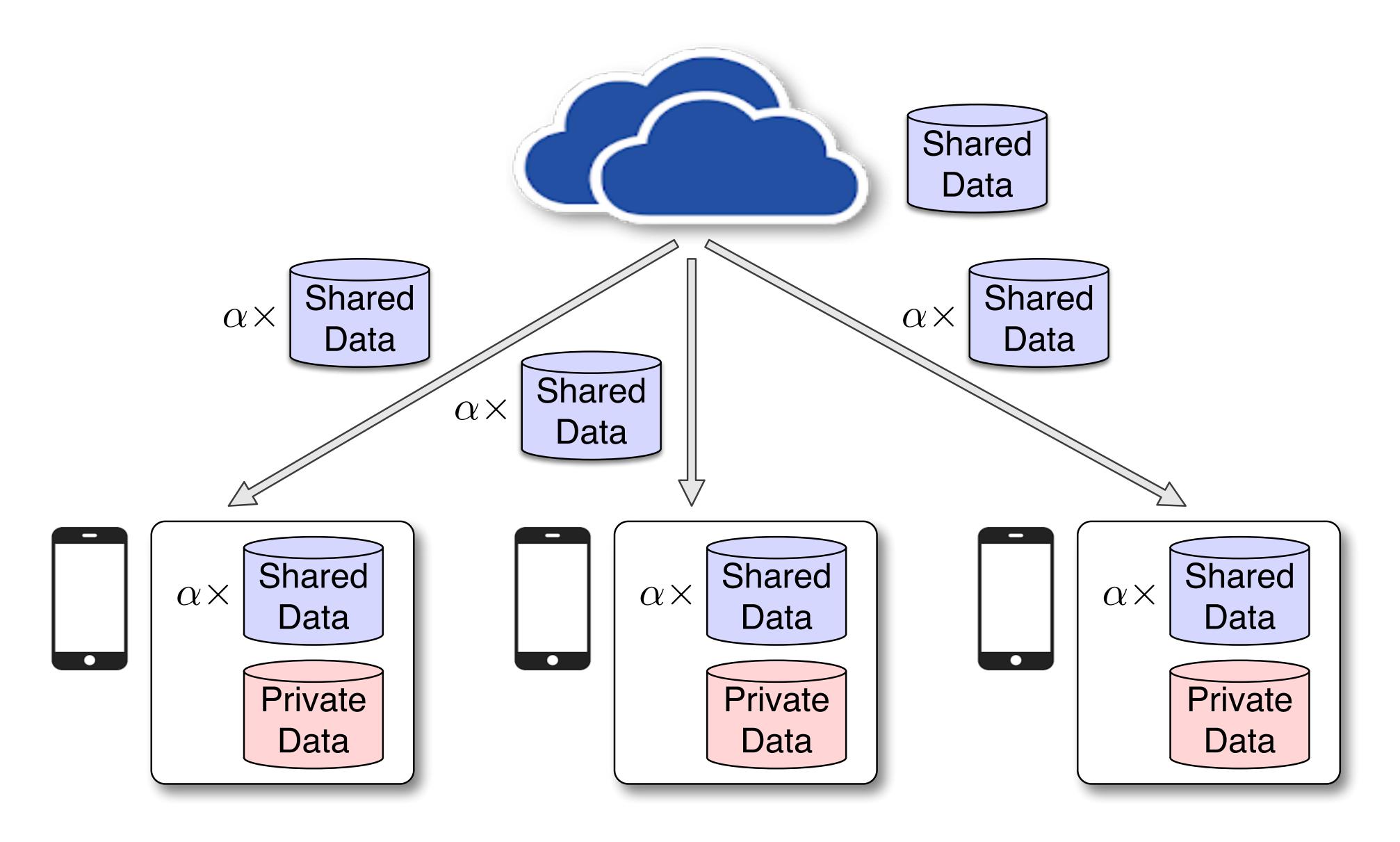
MNIST



### Build IID training data?



No, we don't have any access to the data on your phone.



Zhao, Yue, et al. "Federated Learning with Non-IID Data." arXiv preprint arXiv:1806.00582 (2018).

# Optimizing Federated Learning on Non-IID Data with Reinforcement Learning

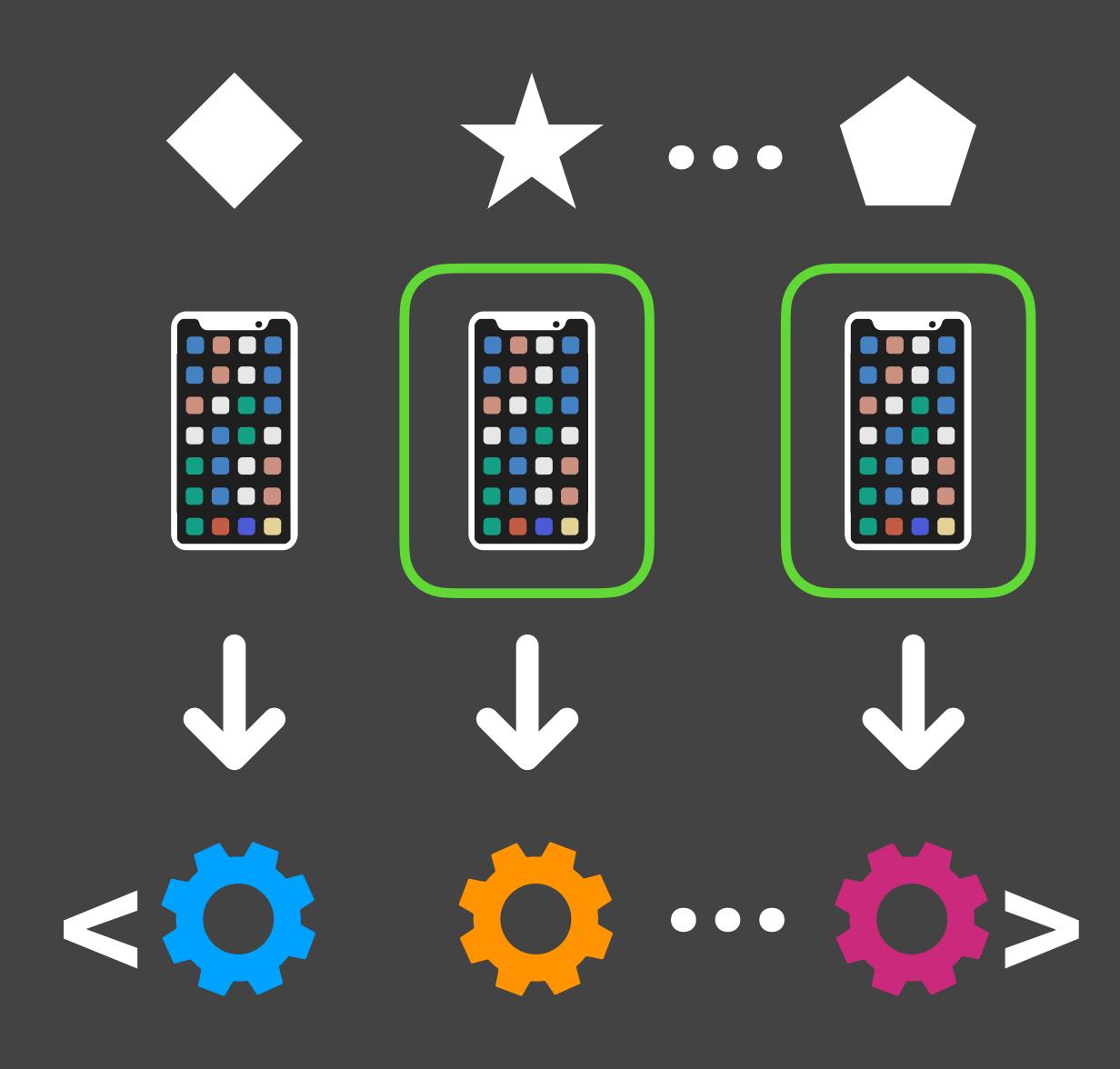
[INFOCOM'20]

### Build IID training data? No



Peeking into the data distribution on each device without violating data privacy

Probing the bias of non-IID data



Carefully select devices to balance the bias introduced by non-IID data

### Probing the data distribution



#### 100 devices, each has 600 samples

Non-IID data







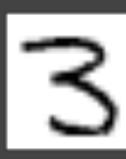














80% data has the same label, e.g, "6"

Initial model





A two-layer CNN model with 431,080 parameters

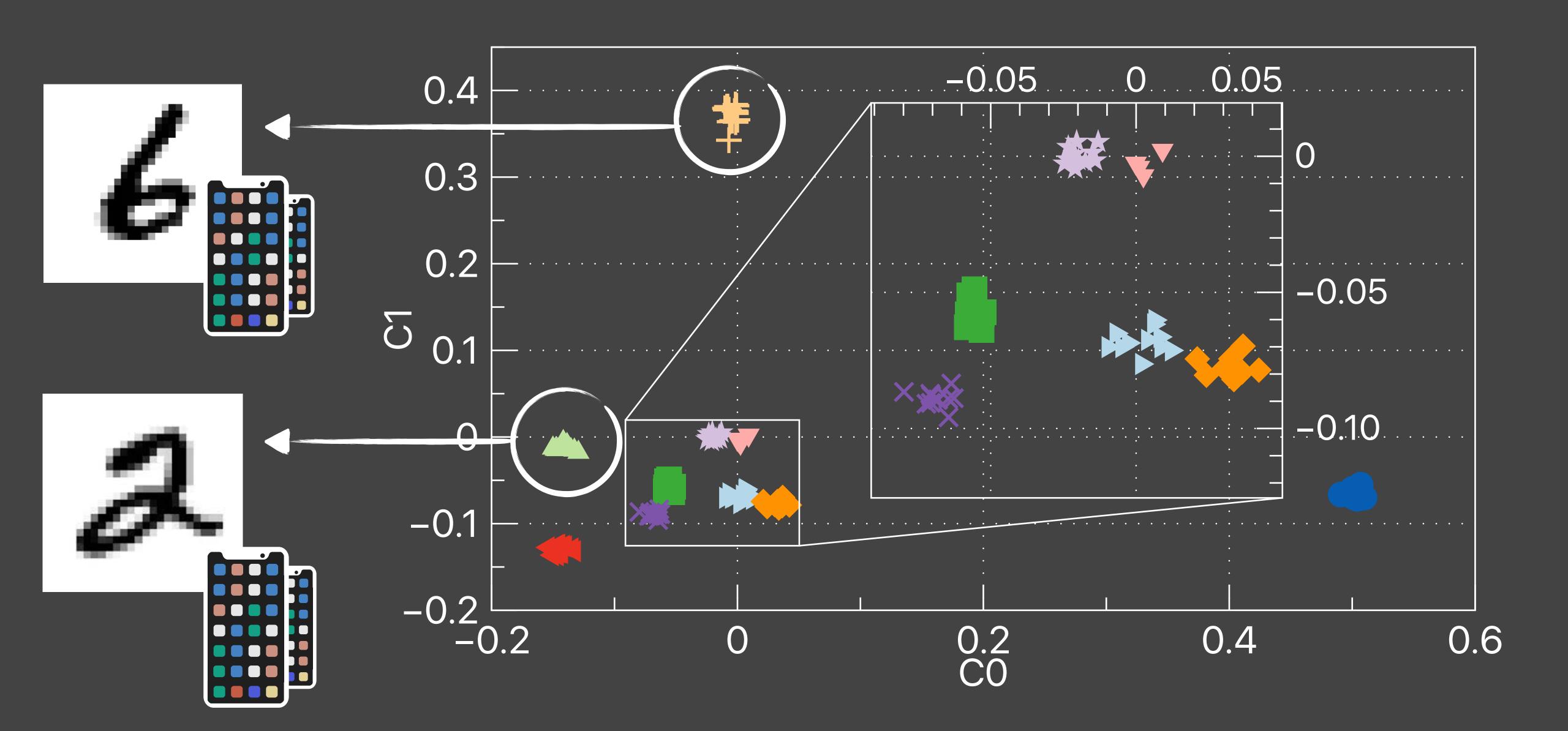
Local model



## We apply Principle Component Analysis (PCA) to reduce dimensionality

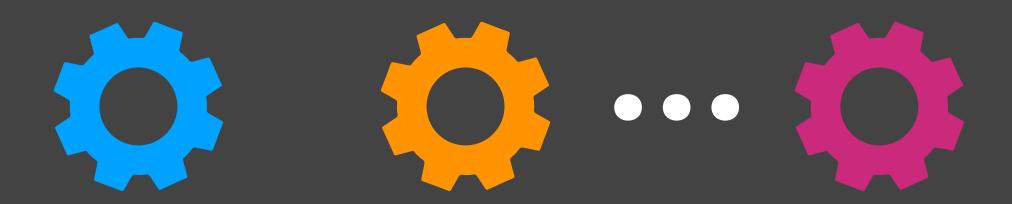
431,080-dimension model weight 2-dimension space





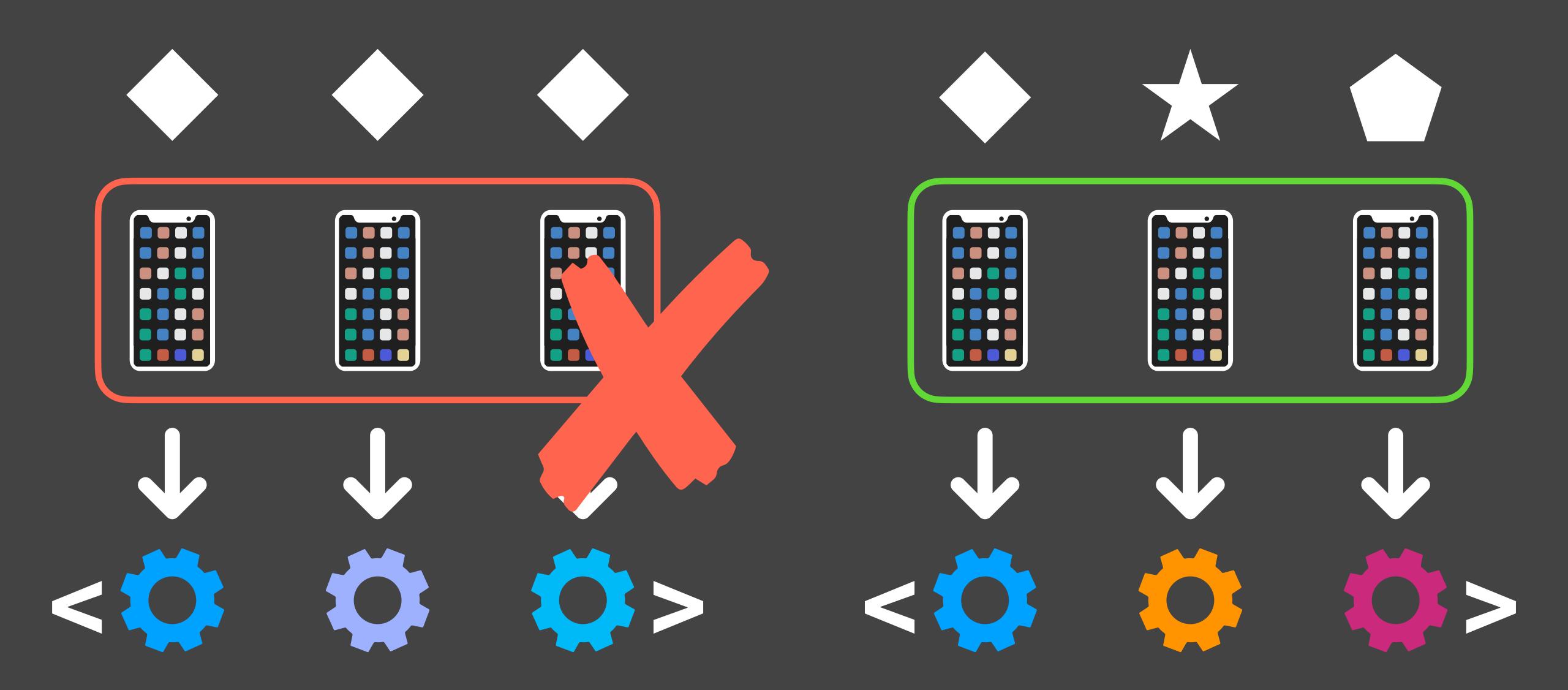


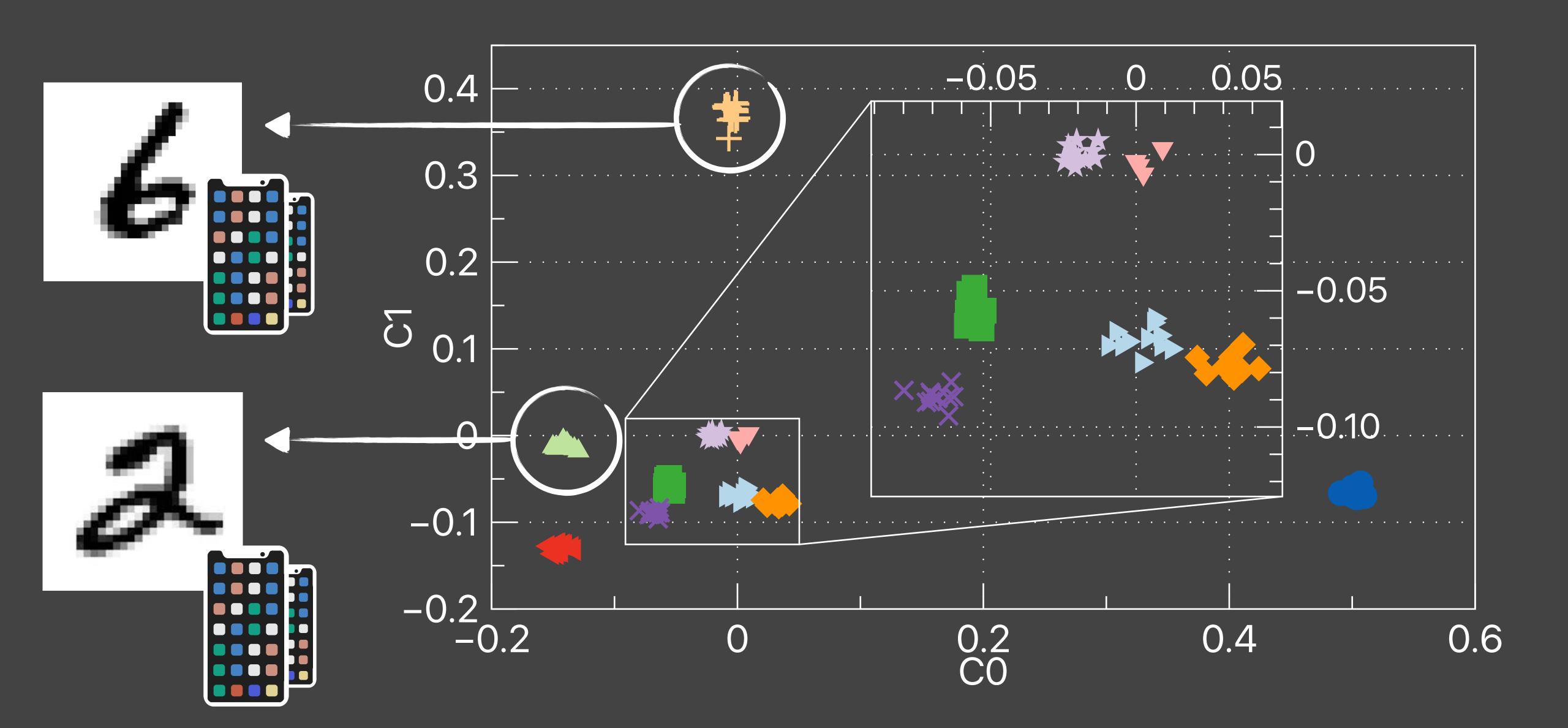
# An implicit connection between model weights and data distribution



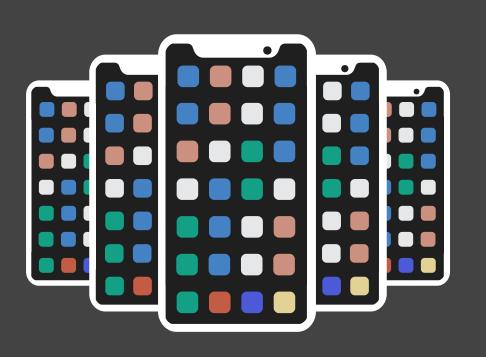
### Probing the data distribution

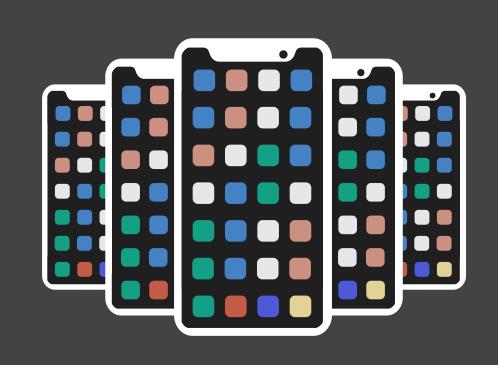
Selecting devices for federated learning

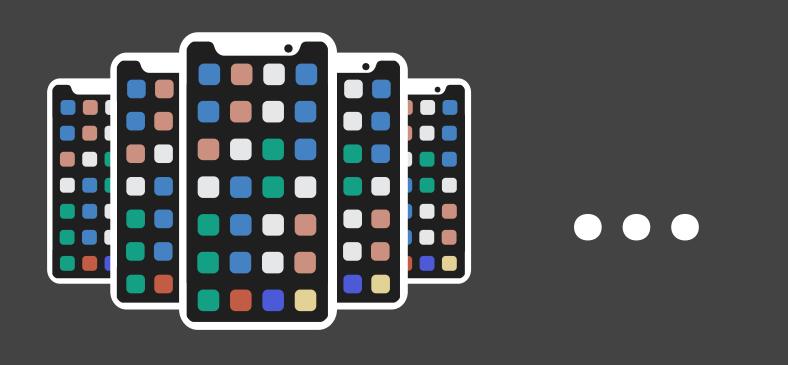




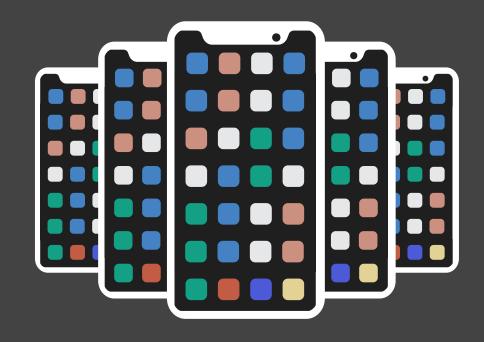
# K-Center Clustering

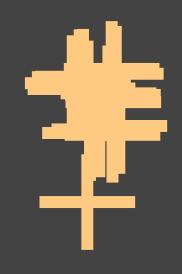




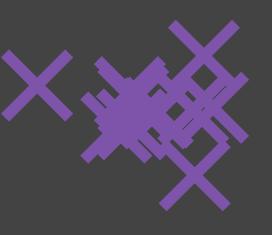


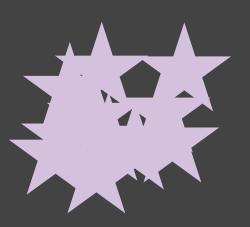




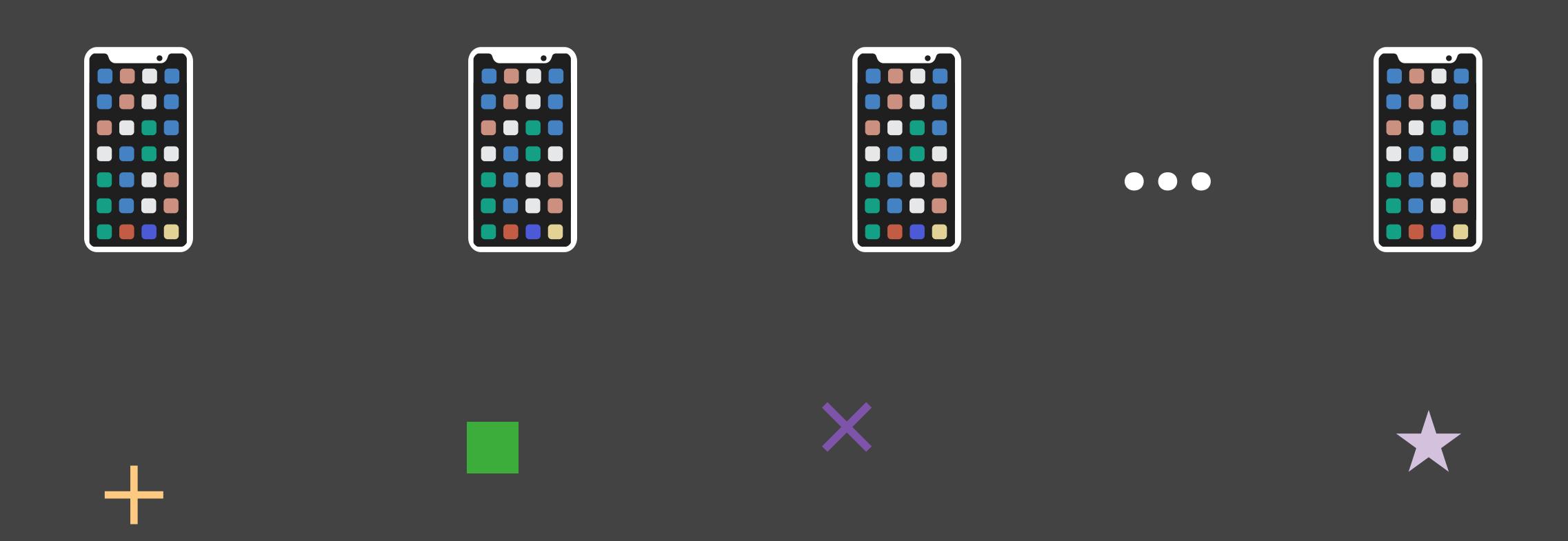


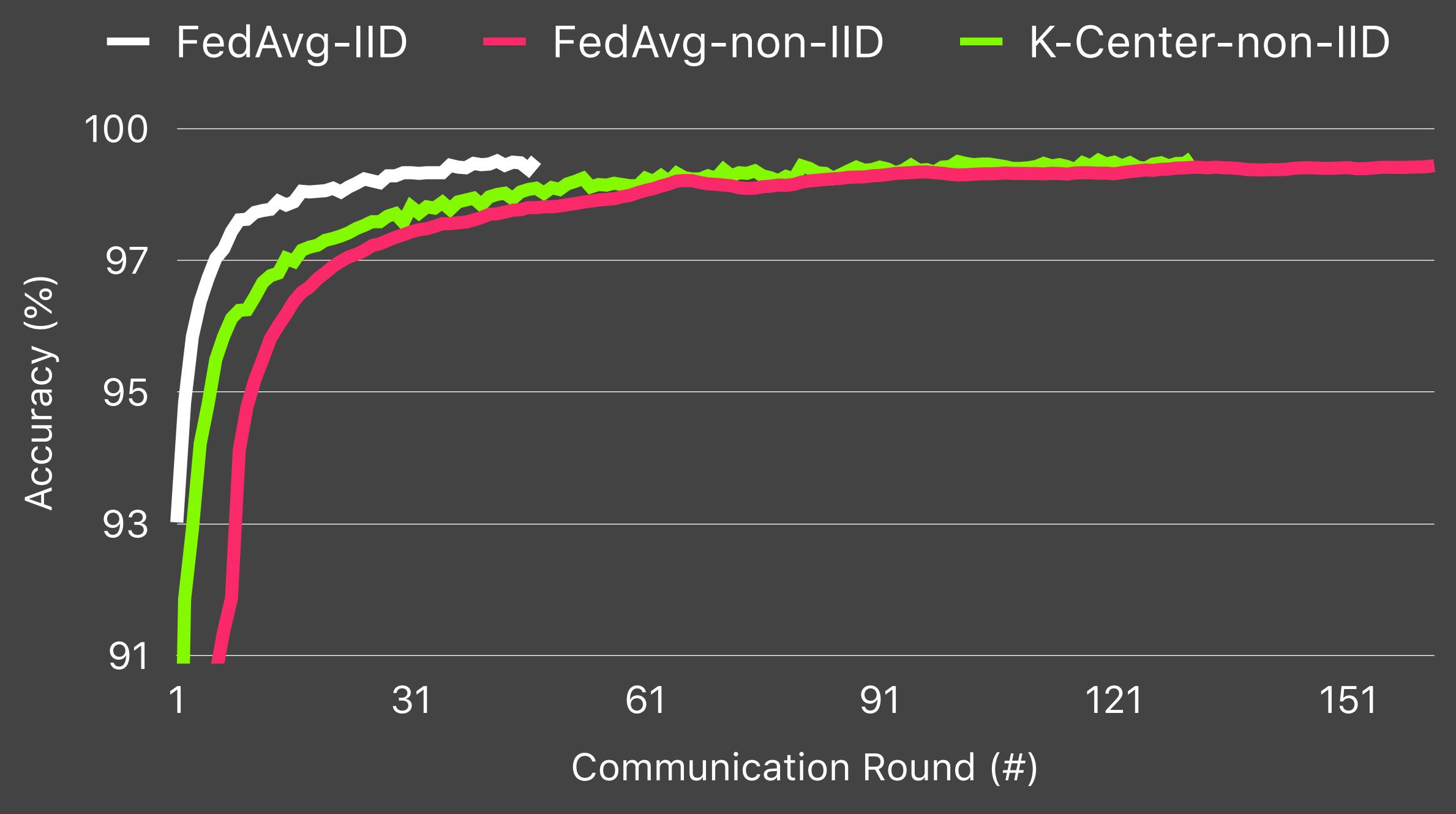






# Random Selection from Groups





Probing the data distribution

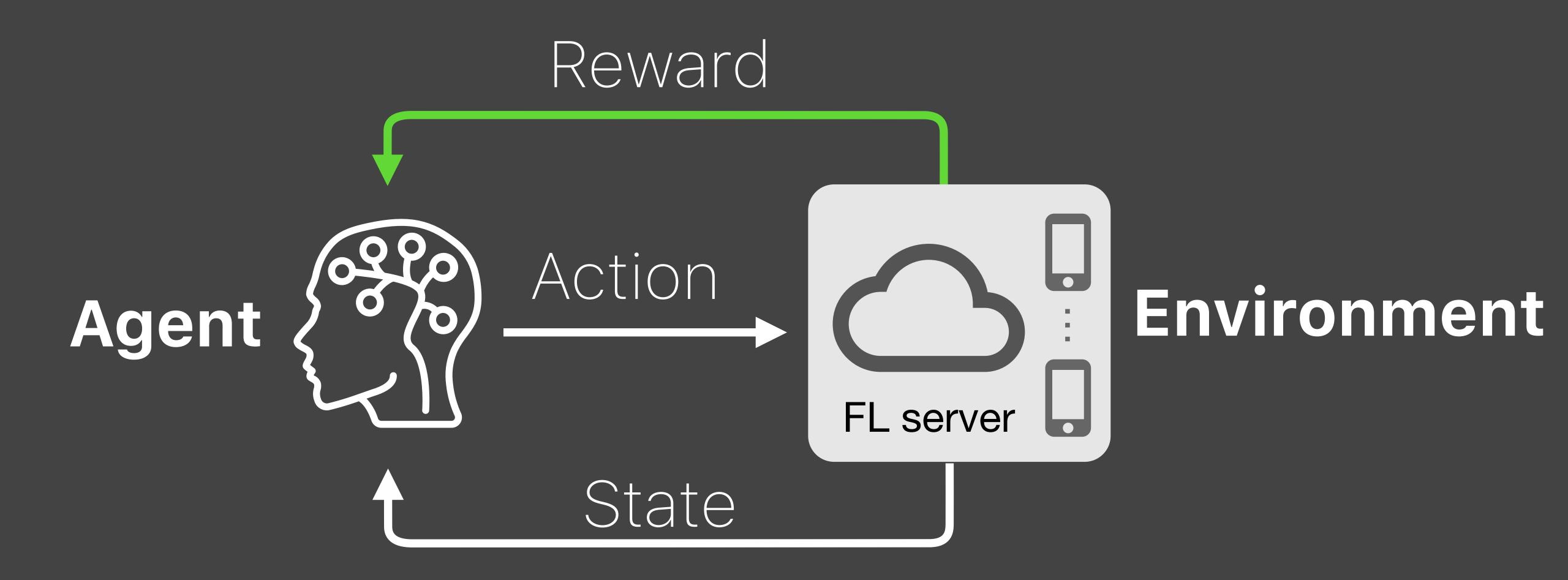
Selecting devices for federated learning

How to select devices to speed up training?

#### It is difficult to select the appropriate subset of devices

- Model weights —> device selection choice
- A dynamic and undeterministic problem

### Reinforcement Learning (RL)



(..., state, action, reward, state', action', ..., end)

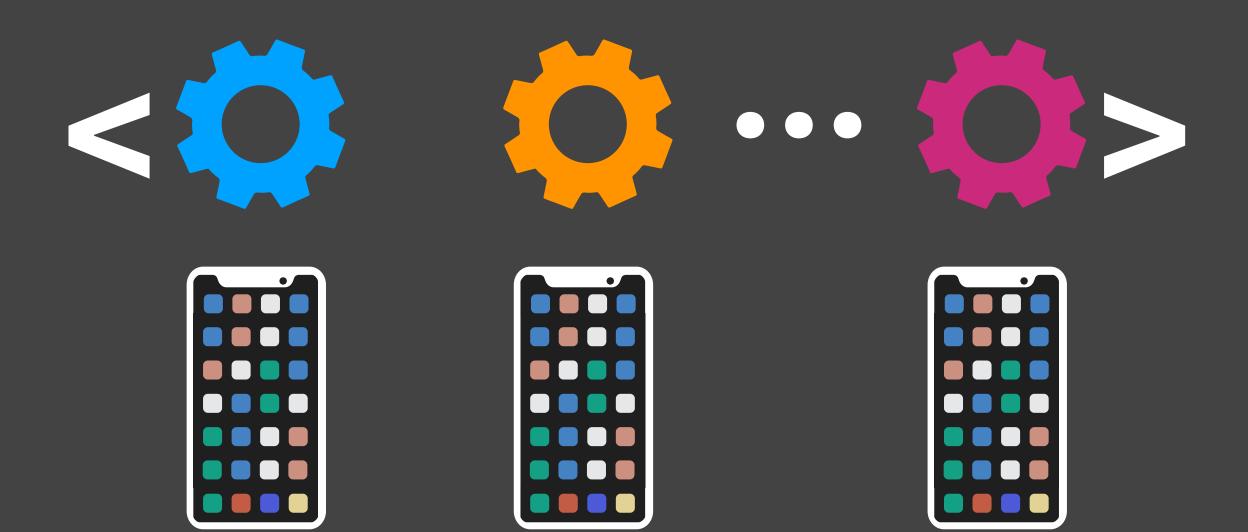
#### Episode

```
(..., state, action, reward, state', action', ..., end)
(..., state, action, reward, state', action', ..., end)
(..., state, action, reward, state', action', ..., end)
```

### Learn to maximize sum (reward)

```
(..., state, action, reward, state', action', ..., end)
(..., state, action, reward, state', action', ..., end)
```

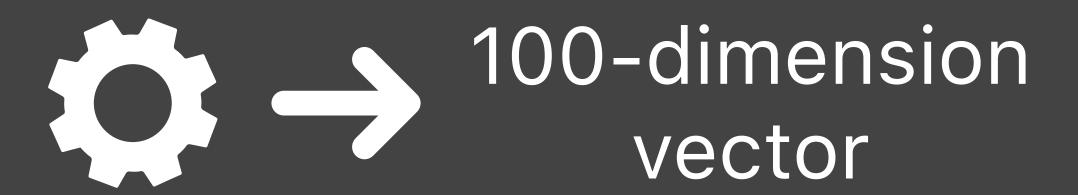




### States

Global weights

Local model weights



#### Actions

Select K devices from a pool of N devices
— a huge action space

Selecting 10 devices from a pool of 100 devices leads to

1.7310309e+13 possible actions

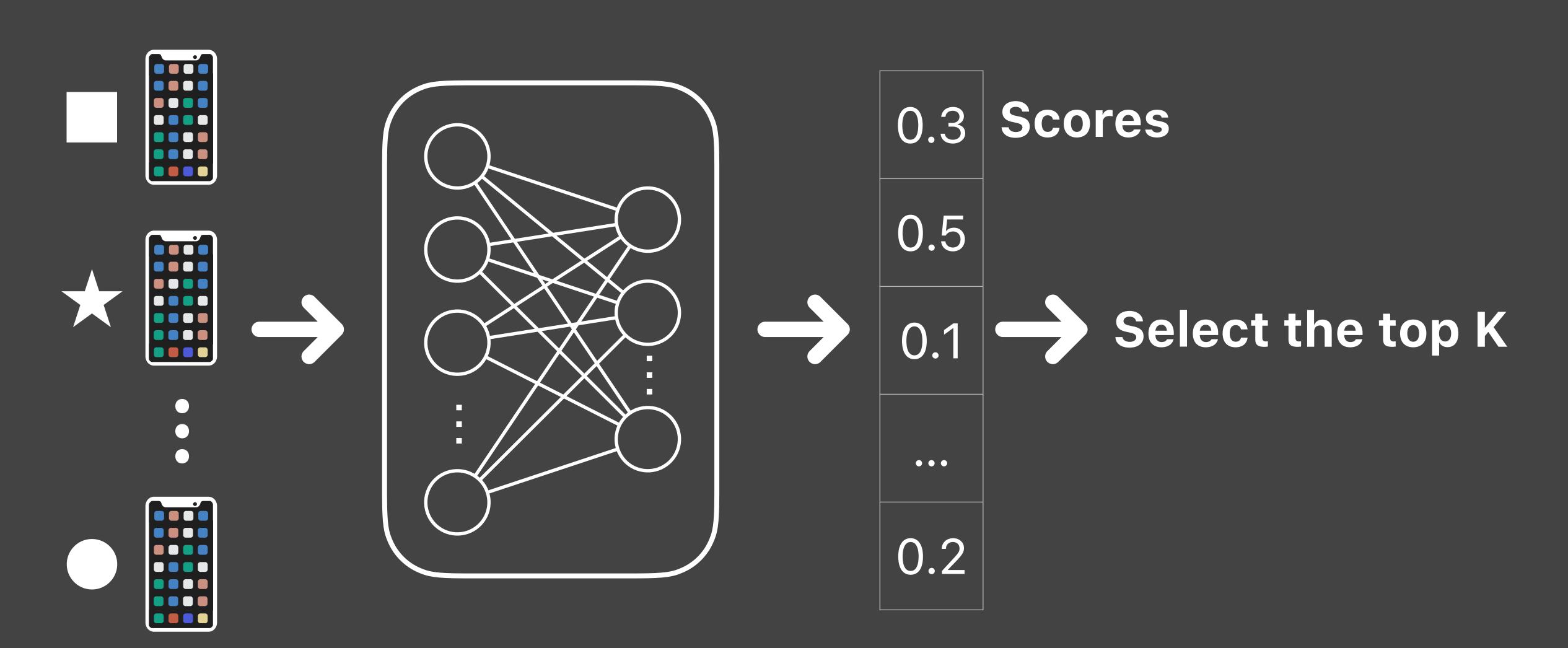
# Modify the RL training algorithm

### Selecting the Top K Devices

Only one device is selected during the RL training

Now the action space is **{1, 2, ..., N}**, instead of selecting K devices from N devices

## Evaluating Each Device



### Rewards

$$r_t = \Xi^{(\omega_t - \Omega)} - 1$$

$$0 < \omega_t < \Omega < 1$$

$$r_t \in (-1,0]$$



round #



Accuracy increase:  $\omega_t \uparrow -> r_t \uparrow$ 



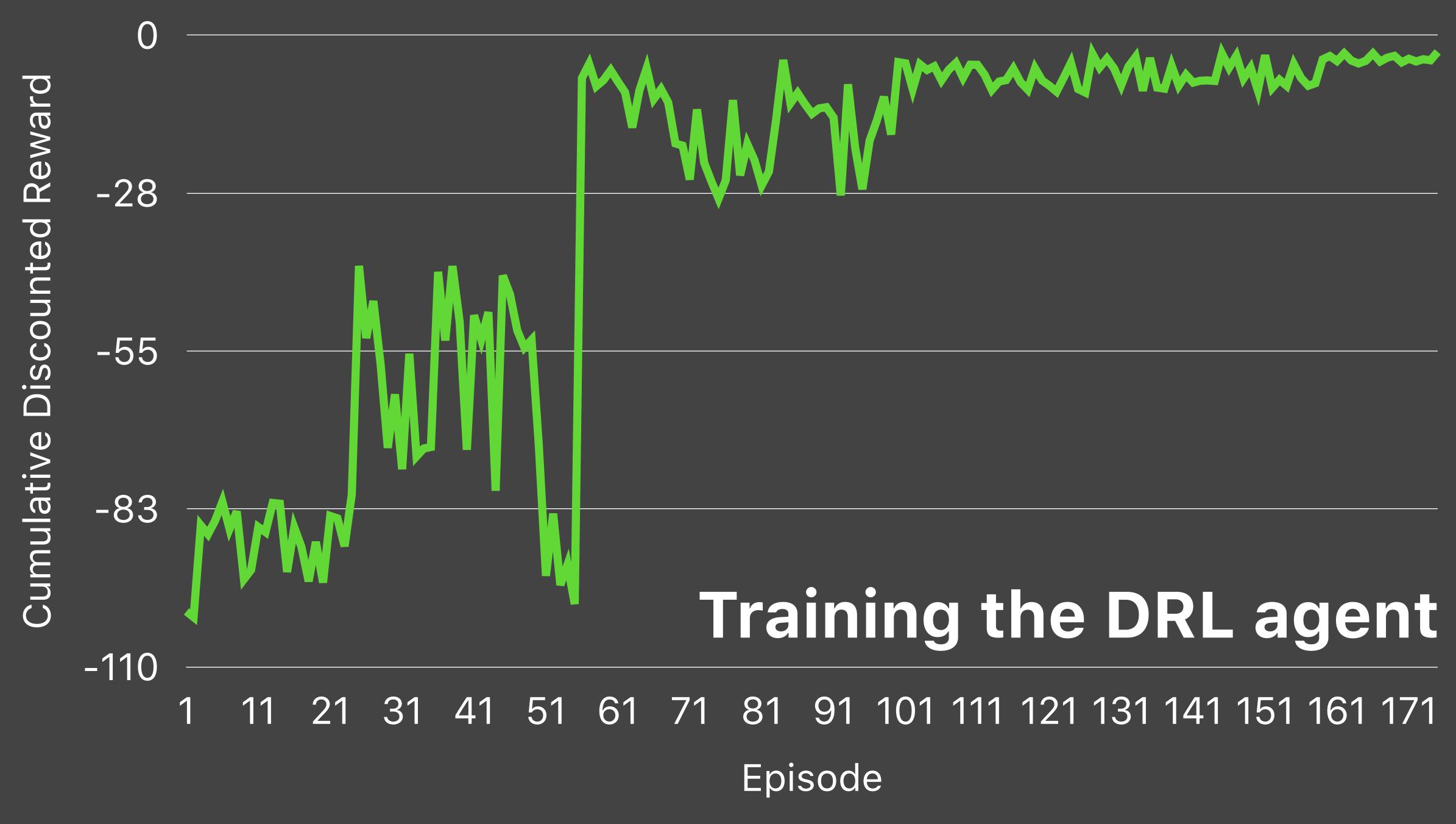
More communication rounds:  $t\uparrow$  —> sum( $r_t$ )  $\downarrow$ 

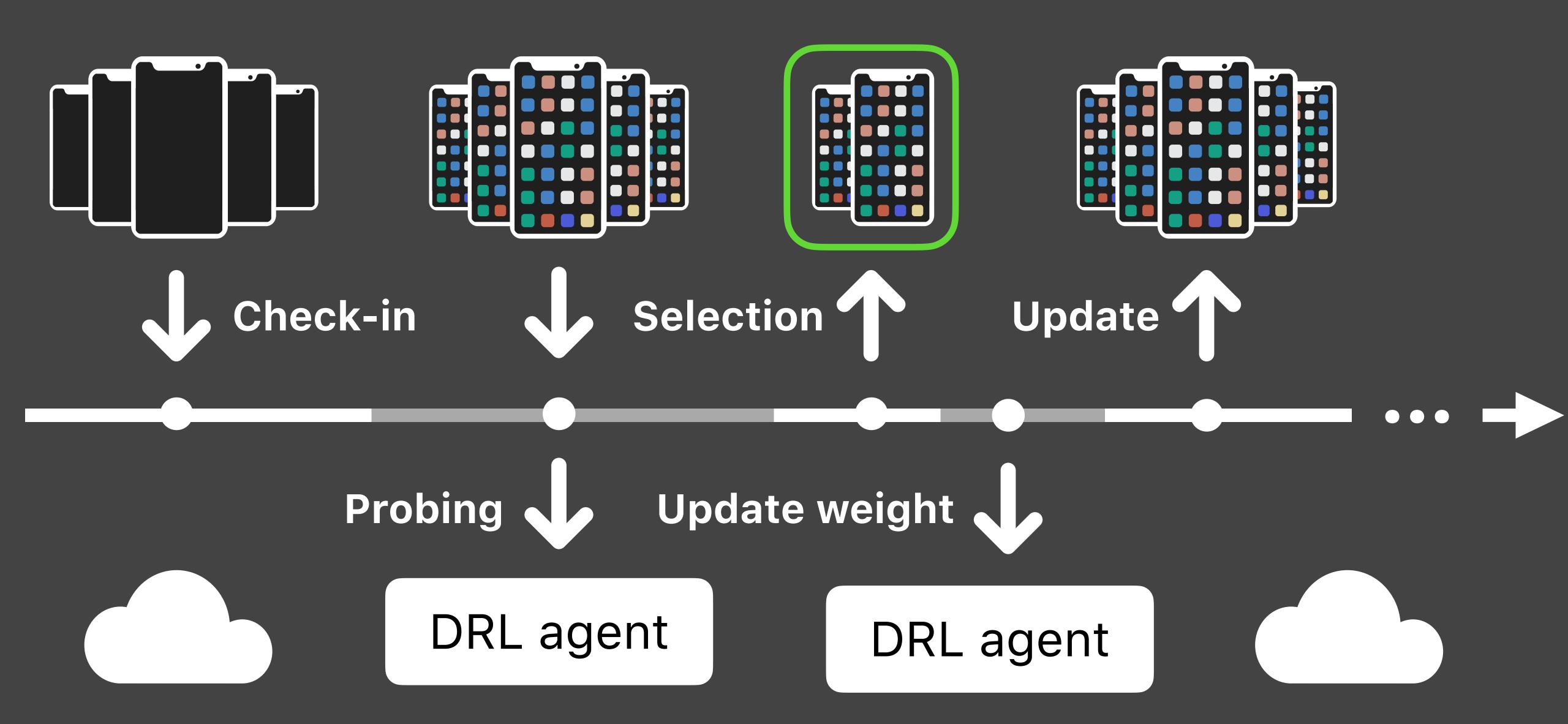
### Training the DRL Agent

Look for a **function** that points out the **actions** leading to the maximum cumulative **return** under a particular **state** 

$$\text{Max} \quad R = \sum_{t=1}^{T} \gamma^{t-1} r_t = \sum_{t=1}^{T} \gamma^{t-1} (\Xi^{(\omega_t - \Omega)} - 1)$$
 discount factor 
$$\gamma \in (0,1)$$

#### Reward $r_t$ Agent DDQN Environment Features softmax $\mathbf{a}_t$ Action FL server State $S_{t-1}$



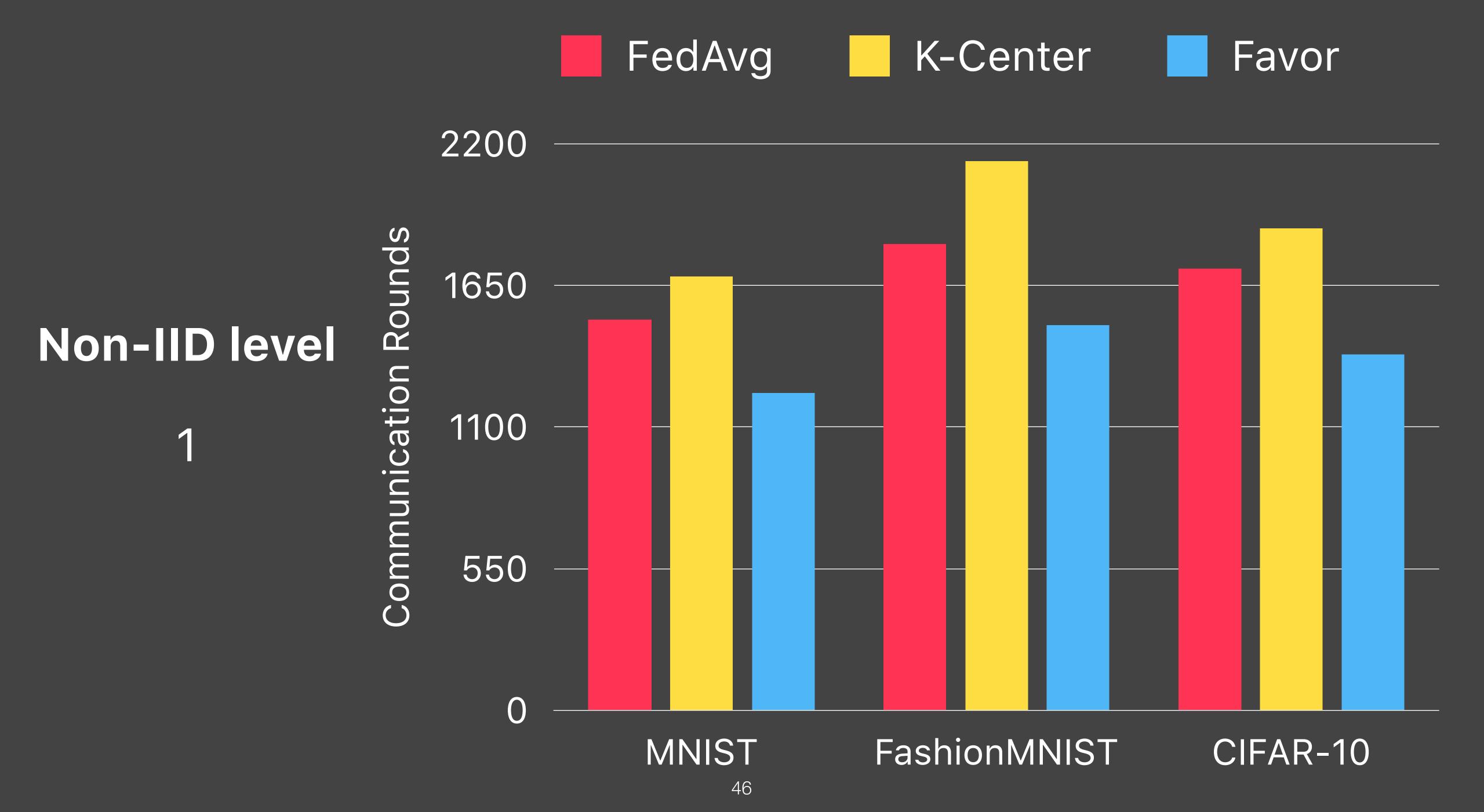


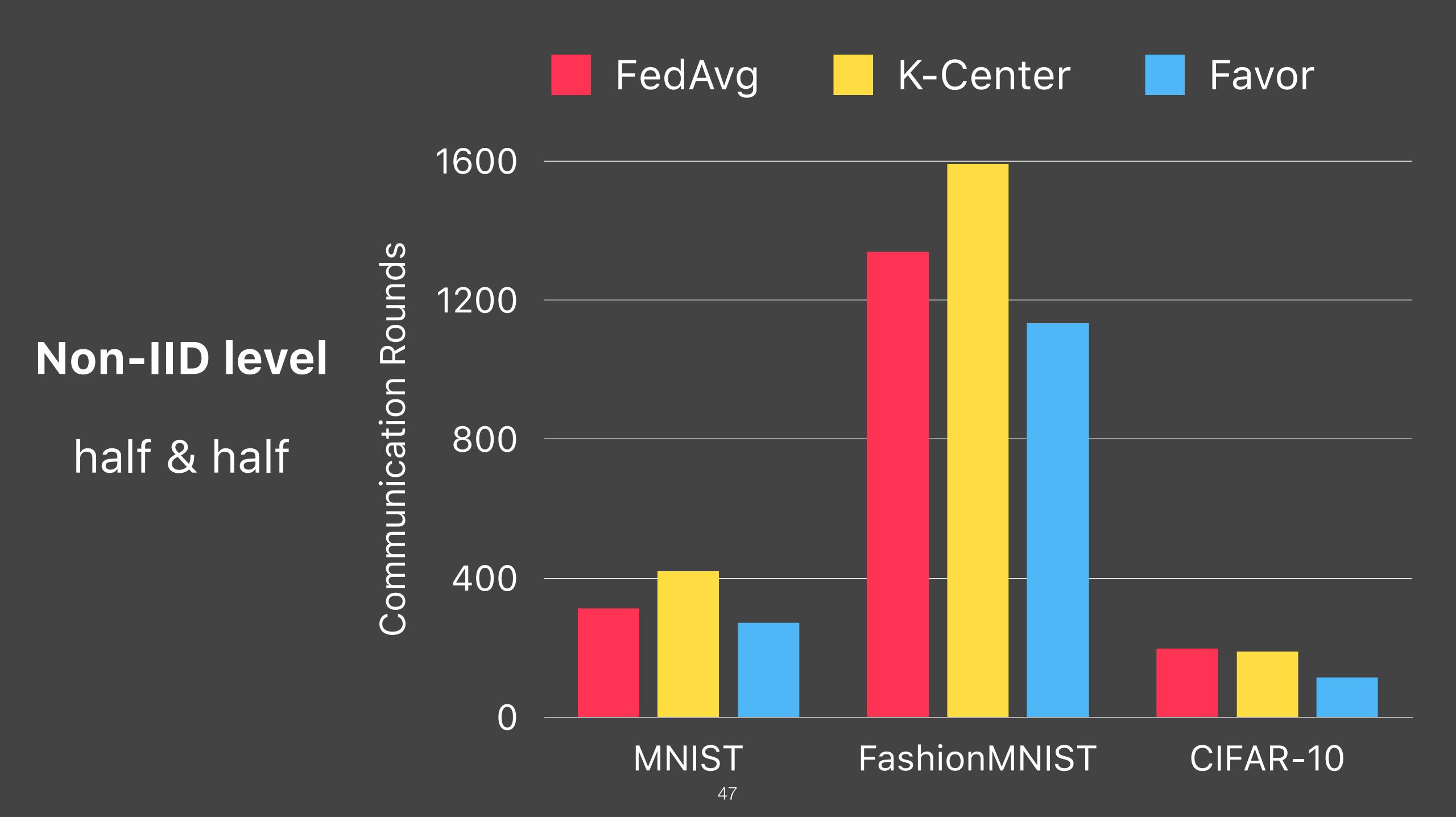
## Evaluating Our Solution

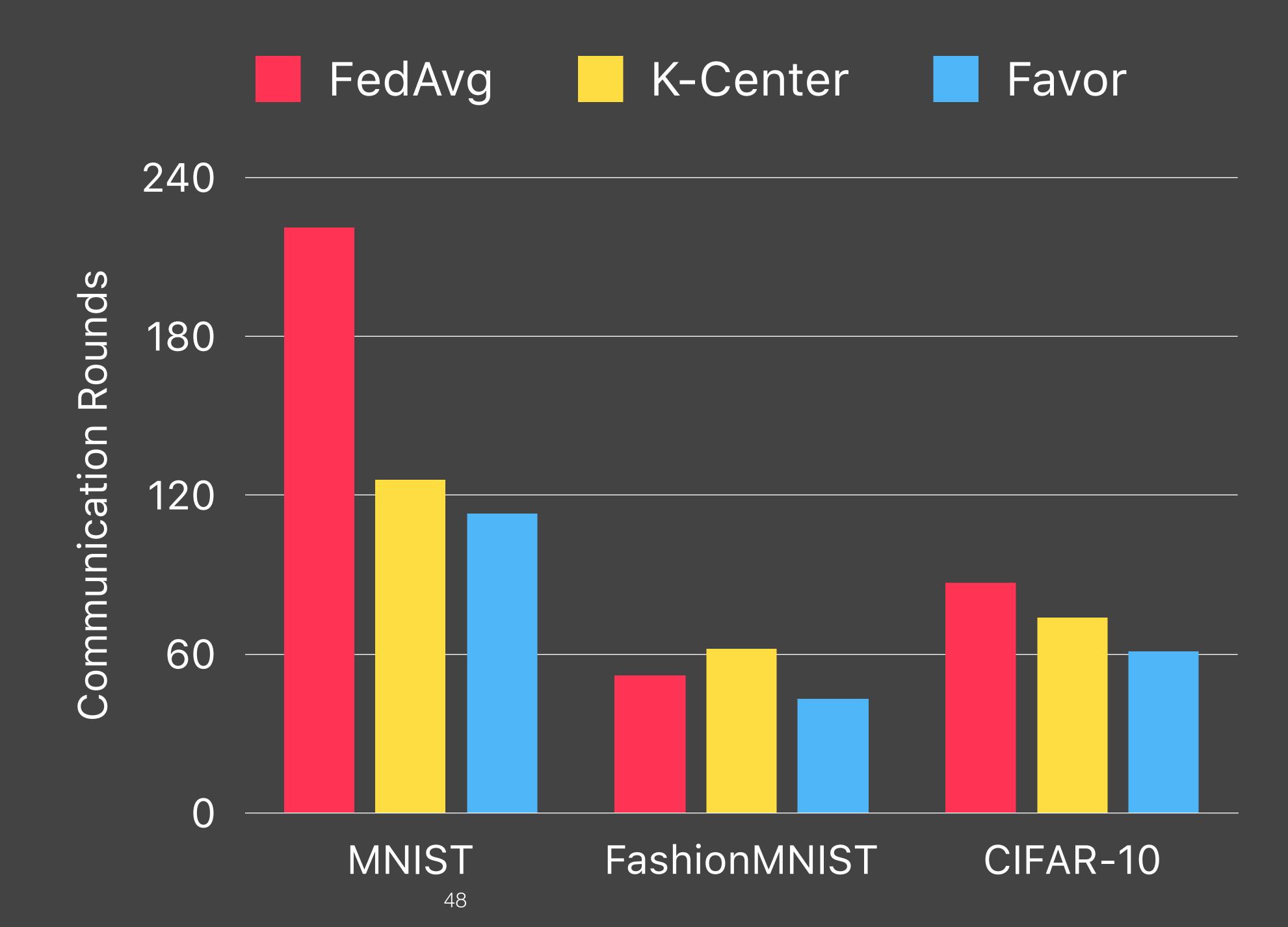
Benchmark: MNIST, FashionMNIST, CIFAR-10

Non-IID level: 1, half-and-half, 80%, 50%

Half-and-half 3 3 3 3 3 7 7 7 1 7 7 7 7

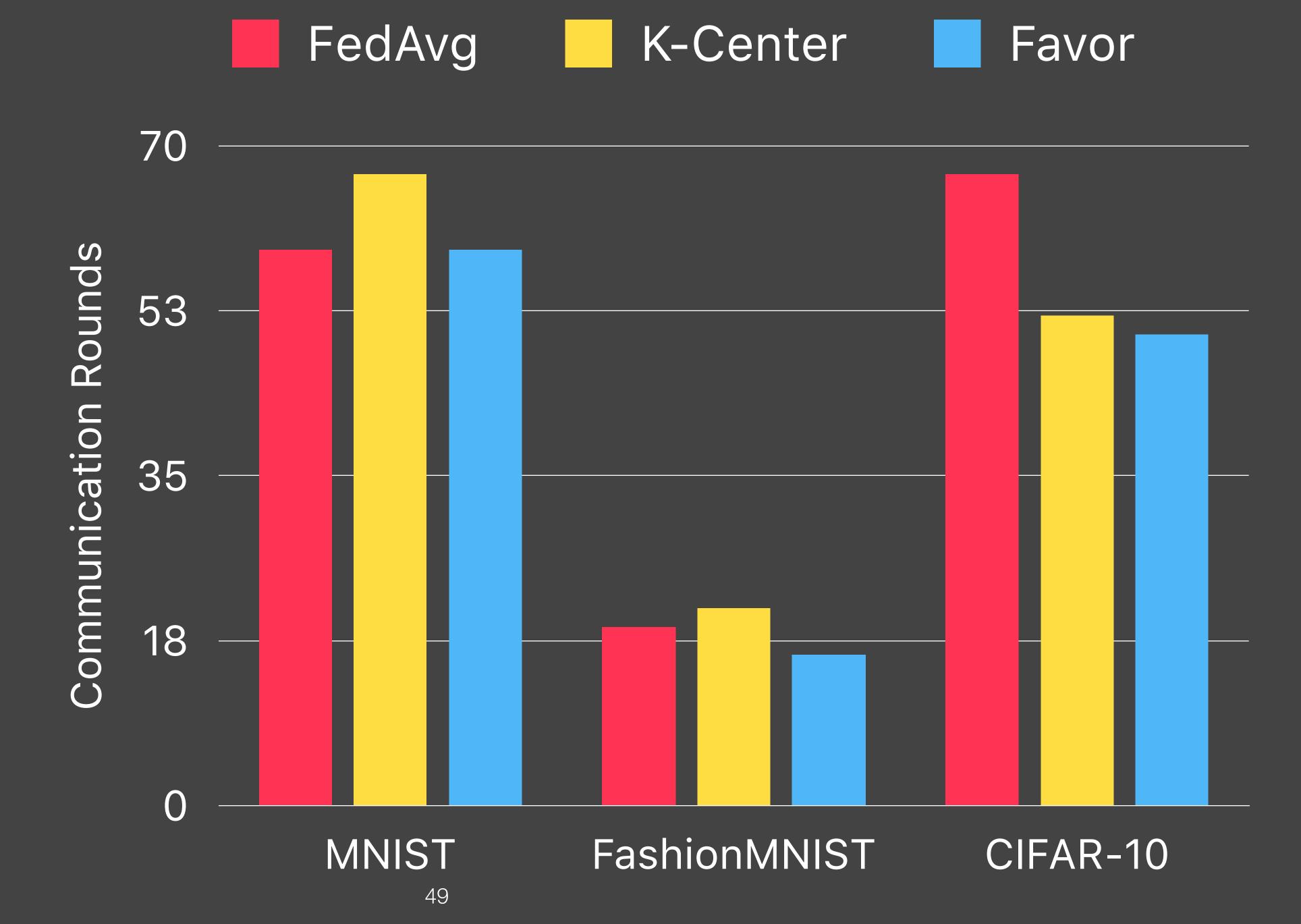






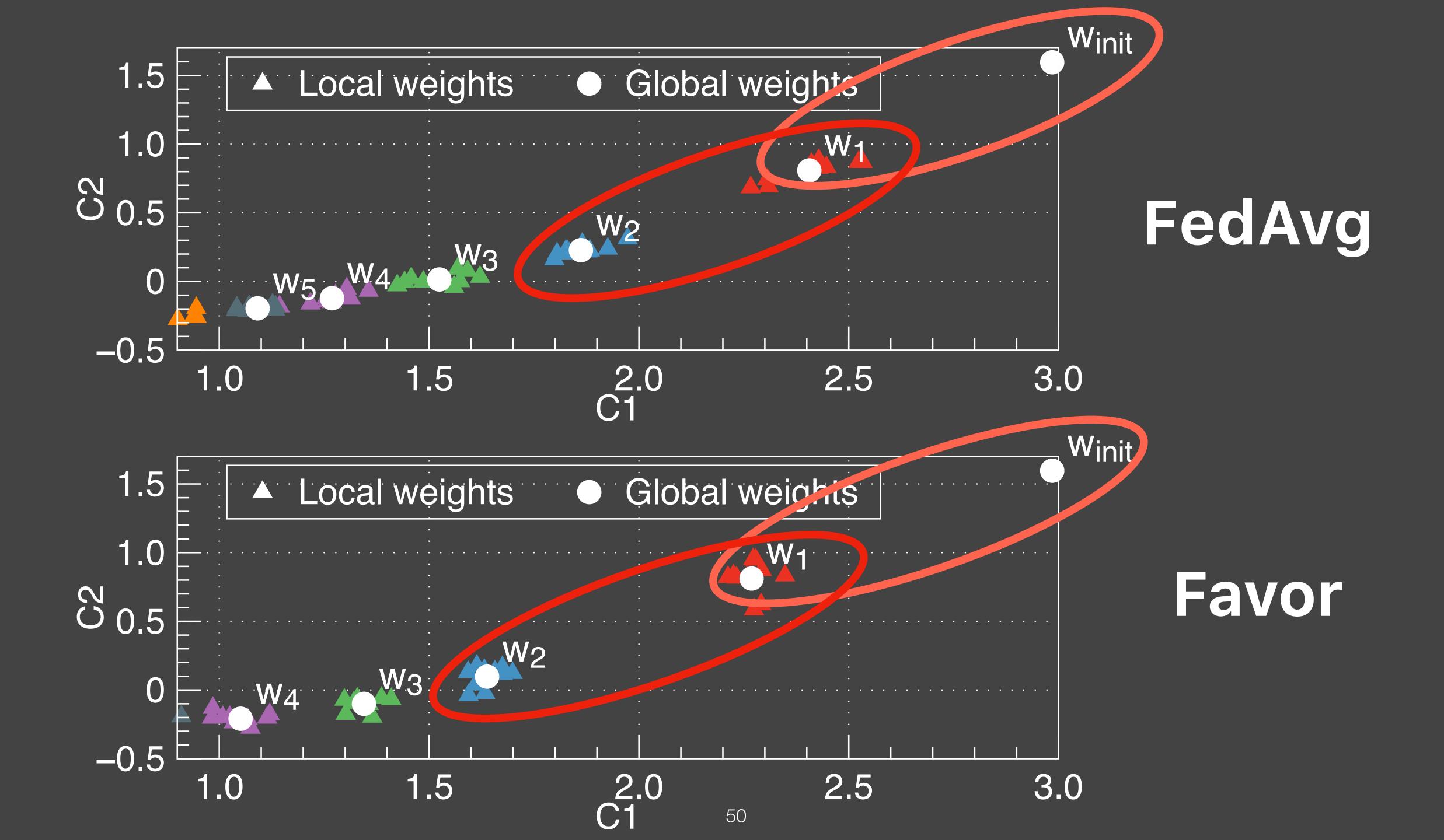
#### Non-IID level

80%



Non-IID level

50%



Indirect data distribution probing

DRL-based device selection

Communication rounds can be reduced by up to

- 49% on the MNIST
- 23% on FashionMNIST
- 42% on CIFAR-10