
FLOWPROPHET: Generic and Accurate Traffic
Prediction for Data-parallel Cluster Computing

∗Hao Wang
SJTU and HKUST

Li Chen
HKUST

Kai Chen
HKUST

∗Ziyang Li
NUDT and HKUST

Yiming Zhang
NUDT

Haibing Guan
SJTU

Zhengwei Qi
SJTU

Dongsheng Li
NUDT

Yanhui Geng
Huawei

Abstract—Data-parallel computing frameworks (DCF) such as
MapReduce, Spark, and Dryad etc. have tremendous applications
in big data and cloud computing, and throw tons of flows into
data center networks. In this paper, we design and implement
FLOWPROPHET, a general framework to predict traffic flows for
DCFs. To this end, we analyze and summarize the common fea-
tures of popular DCFs, and gain a key insight: since application
logic in DCFs is naturally expressed by directed acyclic graphs
(DAG), DAG contains necessary time and data dependencies for
accurate flow prediction. Based on the insight, FLOWPROPHET
extracts DAGs from user applications, and uses the time and data
dependencies to calculate flow information 4-tuple, (source,
destination, flow_size, establish_time), ahead-of-
time for all flows. We also provide generic programming interface
to FLOWPROPHET, so that current and future DCFs can deploy
FLOWPROPHET readily. We implement FLOWPROPHET on both
Spark and Hadoop, and perform extensive evaluations on a
testbed with 37 physical servers. Our implementation and exper-
iments demonstrate that, with time in advance and minimal cost,
FLOWPROPHET can achieve almost 100% accuracy in source,
destination, and flow size predictions. With accurate prediction
from FLOWPROPHET, the job completion time of a Hadoop
TeraSort benchmark is reduced by 12.52% on our cluster with
a simple network scheduler.

I. INTRODUCTION

Data-parallel computing frameworks (DCFs) such as
MapReduce [1], Dryad [2], Spark [3], etc. have tremendous
applications, especially in big data and cloud computing.
DCFs greatly enhance programmers’ productivity by abstract-
ing away implementation details, so that the programmers can
focus on the application logic without worrying about resource
contention, task distribution, and so on. They only need to
apply the APIs (e.g., filter(), map(), reduce()) to
express their logic and manipulate their dataset as if on a single
machine.

DCFs effectively decouple the detailed distributed comput-
ing implementation from the user programs. However, lower
level implementation details hold the key to better application
performance, and lots of research efforts have been spent
along this direction recently. On the micro level, flow-based
optimization mechanisms (e.g., [4]–[8]) attempt to minimize
average completion time of flows or groups of flows by
exploiting flow size provided by the applications. On the macro
level, architectural bandwidth provisioning (e.g., [9]–[12]) and
traffic engineering (e.g., [13]–[15]) solutions try to estimate

∗This work was performed when Hao Wang and Ziyang Li were intern
students at SING Group @ HKUST.

aggregate application traffic demands to enable dynamic net-
work resource allocation. Note that both approaches depend
on predicting the future: the traffic and flow information has
to be known ahead-of-time.

Predicting the future is inherently difficult, and most exist-
ing solutions settle on using heuristic algorithms or measuring
network level parameters, such as flow counters [9, 13] and
socket buffer occupancy [10, 16]. However, these methods
are in essence reacting to traffic, rather than predicting, and
therefore result in poor performance [17].

More recently, an application level traffic forecasting so-
lution, HadoopWatch [18], derives traffic through measuring
task assignments and data size indications on file systems
at the master and worker nodes in Hadoop. However, this
method is customized for Hadoop, and only works when the
underlying application logic is as simple as Hadoop, which can
be described in 2 stages: map and reduce. When the application
logic becomes more complex, this method is uncontrollable
and inaccurate (or incorrect) because it does not know where,
what and when to collect useful information. For example,
in Spark [3], there are multiple stages, and stages that are
consecutive in time may or may not have data dependencies
when doing lazy evaluation [3]. In fact, accurate traffic pre-
diction requires the knowledge of time and data dependencies,
which are closely related to the applications logic and the
corresponding representations of DCFs.

In this paper, we seek a generic and accurate method to
predict flow information for data-parallel cluster computing
frameworks. We specifically set our design goals as follows:

• Generic: We should devise a general interface for traffic
prediction that works for all current and future DCFs. To
this end, we should have a general description of application
execution patterns in order to express complex application
logic.
• Accurate and fined-grained: The method must be able to

provide accurate flow level information, rather than coarse
aggregated traffic demand, to enable fine-grained network
control and optimization. The method should also provide
detailed inter-flow dependency information to feed recent
coflow optimizations [7, 8].
• Ahead-of-time: The method must be able to predict the
flows before they enter the network; and ideally it should
also estimate the flow establish_time accurately.
• Scalable and low-overhead: The method should be able

to work at large scale and introduce as little overhead to the
DCFs as possible.



In essence, we aim to calculate the 4-tuple (source,
destination, flow_size, establish_time) for each
flow. The intention of the first three elements is straightfor-
ward. The establish_time is used to determine the exact
time when a flow will establish (e.g., a network scheduler
will need to make a scheduling decision before the flow
establishes). Thus, we need to know both the logical order of
data processing and the locations and sizes of data partitions.
To this end, we examine prevalent DCFs and identify the key
observation (details in Section II): since application logic is
naturally represented by directed acyclic graphs (DAG) in all
DCFs, DAG contains necessary time and data dependencies
for accurate flow prediction. With DAG, we can explicitly
know where, what, and when information to measure in order
to accurately calculate flow information for complex parallel
computing applications.

Based on the insights, we present FLOWPROPHET, a
general framework to predict flow information for all DCFs.
FLOWPROPHET extracts DAG from data-parallel applications,
then uses the DAG to guide the measurement and prediction. In
the course of design and implementation of FLOWPROPHET,
we make the following contributions:
• We analyze and summarize the common execution patterns
of popular computing frameworks, and extract DAG to
obtain time and data dependencies from applications using
these frameworks to guide the flow prediction.
• We design FLOWPROPHET, a lightweight, generic, and

accurate flow information prediction framework for DCFs.
The application programming interface (API) of FLOW-
PROPHET is general, so that existing and future computing
frameworks can readily use FLOWPROPHET to generate
accurate flow information.
• We have implemented FLOWPROPHET on the most pop-
ular frameworks such as Hadoop and Spark, and build a
real testbed with 37 servers to evaluate it. Our experiments
show that with time in advance and negligible overhead
to application performance, FLOWPROPHET can achieve
almost 100% accuracy in source, destination, and flow size
predictions.
• Using accurate prediction from FLOWPROPHET, we show
that even a simple network level optimization can greatly
improve application performance. In our experiment, the job
completion time of a Hadoop TeraSort-25G benchmark is
reduced by 12.52% on our 37-server cluster.

The rest of this paper is organized as follows. Section II
introduces the key observation that motivates us to leverage
DAG to predict flow information. Section III presents the
design and implementation of FLOWPROPHET. Section IV
discusses the evaluation benchmarks and results of FLOW-
PROPHET. Section V reviews the related works. Section VI
concludes the paper.

II. DAG-ASSISTED FLOW PREDICTION

In this section, we examine how DAG assists the calcula-
tion of flow information (summarized in Figure 1). We first
delve into the typical application life-cycle in popular DCFs,
and then establish the relationships between application logic,
execution sequence, DAG, and data movement. Finally, we
demonstrate the practical calculation steps of flow information
prediction using DAG.

Time Dependency

…

Data Dependency

Application 
Submit

job#1 job#n

Master

Worker#1 Worker#2 Worker#n

…

…

data transfer

dependency stage

data partition
tasks

…

4

52 3

1

0

Task
Assignment

Stage#5

Stage#4job#2

Fig. 1: Data-parallel computing framework: application
logic and data movement.

Application Life-cycle: In DCFs, there is a gap between
the application logic and the actual operations in the backend
cluster, which may contain thousands of CPU cores, because
user application only concerns with a single machine during
development to lower complexity. To achieve scalable perfor-
mance, DCFs automatically discover and exploit parallelism
from user’s application logic, and distribute parallel computa-
tional tasks to every computing node.

The life-cycle of a user application is described in Figure 1.
At the start, user application is resolved into jobs1. For each
job, DCFs calculate the order of executions and data depen-
dency, which can be described by a DAG, as shown in Figure 1.
Specifically, DCFs identify which tasks have dependency on
which data partition, and plan the parallel executions of the
application. These tasks are aggregated into a stage. Then,
the tasks in a stage are assigned to workers, and the parallel
operations on the dataset are launched. The nodes in DAG are
stages, and the arcs represent dependency between stages. Data
transfer occur only during stage transitions.

Almost all popular DCFs describe their operations in
DAGs. For example, Dryad’s [2] execution engine is driven by
a graph description language, which empowers the developer
with explicit graph construction. Pregel [20], which is based on
Bulk Synchronous Parallel (BSP), adopts a sequence of super-
steps to construct user application. Every superstep contains a
data communication phase and a barrier synchronization phase,
which is essentially a DAG with two vertices and one edge.
Spark [3] defines a novel structure named Resilient Distributed
Dataset (RDD) which expresses DAG with RDD lineage.
Spark provides transformations, and actions (e.g., union(),
join(), filter(), map(), take(), etc.) to build RDD
lineage and explicitly express algorithm logic. Compared with
previous framework, MapReduce [1] (or Hadoop [19]) is much
simpler. Its two primitive semantics: map and reduce can
also be regarded as a DAG contains only two vertices and one
edge. CIEL [21] develops a language named Skywriting [22]
and a series of operators (e.g., exec(), spawn(), map(),
etc.) to express task-level parallelism in DAG.

1Iterative applications with termination criterions will be divided into
dependent jobs: each will check the termination criterion to decide whether
to move on to the next.



…

…

…

map tasks

reduce tasks

input data

output data

(a) Data shuffle between mappers
and reduces in Hadoop [19]

…………….

…………….

n

n

input data

output files

computing 
vertices

…………….
n

(b) Data channels between computing
vertices in Dryad [2]

…

…

supserstep(i)

barrier synchronization

computing

nodes

computing

nodes

(c) Data communication in one su-
perstep of Bulk Synchronous Paral-
lel (BSP) in Pregel [20]

stage #3…

…

input data

stage #1 stage #2

stage #0

output data

tasks

…

(d) Data shuffle between stages in
Spark [3]

Fig. 2: Data movement patterns.

Observation: DAG contains necessary time, data, and flow
dependencies for accurate flow prediction.

Time dependency: Time-dependency refers to the execution
order of stages. DCFs process the DAG one node (stage) at
a time in a depth-first-traversal order [3], and generate this
order. Stages may execute parallel in time, while others have to
wait for completion of parent stages. Traffic is only generated
between parent and child stages, and with DAG, we know
when the flow transmission will occur.

Data dependency: DCFs maintain the life cycle of data:
import, transfer, storage and export. First, data imported into
the cluster will be split and distributed to the entire cluster.
Then, DCFs assign computation tasks to each node based on
data locality and resource scheduling scheme. Along with the
execution of computation tasks, intermediate data is generated
and cached locally. In Hadoop (Figure 2(a)), a JobTracker
informs reducers when and where (i.e. which mapper node) to
fetch data to perform reduce tasks. In Dryad, data channels
are maintained between computing vertices (Figure 2(b)),
and data flows along these channels. For Pregel, a superstep
requires all the computing node to exchange data by barrier
synchronization before the next superstep (Figure 2(c)). For
Spark, data shuffle takes place between specific stages based
on the dependency recorded in RDD lineage (Figure 2(d)).
In summary, since every process of the data life cycle is
conducted by DCFs, DCFs are capable of exporting location
and size of every piece of intermediate data and final results.

Since traffic is essentially data movement, flow prediction
requires knowing where, what and when the data is moved,
and such information can be retrieved from the DAG. When a
stage (a node in DAG) relies on the output of a group of stages
(every stage in this group is called the stage’s parent), it has
to wait until all the parents are finished. Concurrently running
stages do not have data dependency on each other. Thus, we
can infer from the DAG the source (parent stages), destination
(child stage), size (amount of data required), and time (upon
completion of all parent stages) of the transmission of data
between stage transitions.

Flow dependency: The data flows generated between consec-
utive stages are inter-dependent, because they usually share
common communication requirements and objectives (Fig-
ure 2). Flow dependency refers to an important concept of
coflow [23], which defines a semantically related collection of

flows. We observe that edges in DAG can be naturally used to
identify coflows in DCFs, which provides valuable information
for coflow-based optimization mechanisms such as [7, 8].

Calculating flow information with DAG: Inspired by
our observations, we can design a general method to cal-
culate flow information 4-tuple, (source, destination,
flow_size, establish_time) by developing a set of
interfaces to: 1) output stage context2, and to 2) extract
locations and sizes of data partitions.

t

Flow

Prediction Output Time

establish_time

Flow Start Time Flow End Time

Fig. 3: An example of establish_time

At the high level, the 4-tuple is calculated as follows
(detailed design and implementation in Section III):
• source: we look for the current stages in DAG, and
identify the data partitions that need to be transferred. The
worker node containing the data is the source.
• destination: we look for next stages in DAG, and
identify which worker node will work on which piece of
data. Thus, the destinations of the data can be identified.
• flow_size: we use the interface to look up sizes of data

partitions to be transmitted.
• establish_time: as depicted in Figure 3, FLOW-

PROPHET outputs prediction information of a flow at the
Prediction Output Time, and the flow begins at the Flow
Start Time. The establish_time is defined as the time
period between the Prediction Output Time and the Flow
Start Time. We develop a heuristic algorithm to estimate the
expected establishing time intervals for subsequent flows.
This algorithm is adaptive to the application and the DCF.

III. FLOWPROPHET DESIGN AND IMPLEMENTATION

We introduce the design and implementation of FLOW-
PROPHET in this section. First, we dissect the flow information
prediction in DCFs into several sub-problems, and describe our
solutions (§ III-A). Then, we present the workflow of FLOW-
PROPHET to show how different components work together

2Stage context includes current stage, next stage, and the dependency
between them.



…

Flow 
Calculator

Data
Aggregator

Spark 
Worker

Hadoop 
Worker

Ciel 
Worker

DAG Builder

…

Write

Data Tracker

Fetch

Master Node

Local 
Memory

Local 
Disk

Network
Interface

Worker Node

Spark 
Master

Hadoop 
Master

Ciel 
Master

Data 
Status

Task List Stage ID

Data Status 
List

Fig. 4: The architecture of FLOWPROPHET.

(§ III-B). Finally, we go through the implementation details of
each component of FLOWPROPHET in § III-C.

A. FLOWPROPHET Overview

Figure 4 depicts the architecture of FLOWPROPHET, which
contains 4 modules: DAG Builder, Data Tracker, Data Ag-
gregator, and Flow Calculator (functions explained below).
FLOWPROPHET is attached to DCFs to enable flow pre-
diction. When implementing a general framework to pre-
dict the 4-tuple (source, destination, flow_size,
establish_time) for every upcoming flow in DCFs, we
are essentially solving the following sub-problems:

How to extract the full DAG? The DAG is the pivot for
predicting flow information for DCFs. On the master node of
DCFs, the DAG Builder builds a full DAG by parsing event
messages from the DCF master interfaces.

How to collect data partition status? When a stage is com-
pleted, the computation result is kept as a data partition in local
disk or local memory of each worker node separately. A data
partition status contains the stage_ID, partition_ID and
size. The Data Tracker receives event messages from DCF
worker interfaces and maintains a data structure to record all
data partition status. The Data Aggregator requests the status
of each data partition from the Data Tracker on each worker.

How to be scalable and lightweight? We pursue scalability
and low-overhead in the design of FLOWPROPHET. All mod-
ules in FLOWPROPHET follow the principles of Actor Model
to exchange messages. The Actor Model is an asynchronous
programming model for distributed applications [24]. The
actors are fairly lightweight concurrent entities. They process
messages asynchronously using an event-driven receive loop.
The Actor Model is capable of offering a high level of
abstraction for achieving high concurrency and parallelism.

B. FLOWPROPHET Workflow

Figure 5 depicts how modules of FLOWPROPHET coop-
erate to predict upcoming flows when a stage is finished.
When the DAG Builder receives a message that current stage
is finished, the DAG Builder checks whether there will be
traffic between the current stage and the next stage. If yes,
the DAG Builder will send the current stage ID to ask the
Data Aggregator to collect data partition status from each
Data Tracker. After the Data Aggregator finishes the collection,
FLOWPROPHET knows the locations and sizes of all data par-
titions. Then, when DAG Builder is notified that a new stage is

DAG Builder Data Aggregator Data TrackerFlow Calculator

currentStageID
currentStageID

List[DataPartitionStatus]

List[(Location, Size)]

List[task],
List[ParentStageID]

currentStage 
Finished

Flow info.

List[partitionID]

t

List[FailedTaskInfo]

Extra Flow info.

taskFailure

nextStage
Start

Fig. 5: Sequence diagram begins with an event that current
stage is finished.

beginning, it will send the stage context to the Flow Calculator.
The stage context contains the tasks and parent stage IDs of
the next stage. Each task is identified by (partition_ID,
executor_ID, func). The Flow Calculator then combines
and matches the task list and stage list with data partition status
list to output the (source, destination, flow_size)
for each flow. Note that task failures will cause corresponding
data partitions to be transmitted again. FLOWPROPHET handles
task failures as follows: Data Trackers receives task failure
events from the DCF worker and notify Flow Calculator of the
extra flow information. Further, the Flow Calculator obtains the
establish_time by a heuristic algorithm.

C. FLOWPROPHET Implementation

We now describe the implementation of the 4 modules of
FlowProphet in detail. We implement FLOWPROPHET with
Scala 2.10.4. We apply the actor model based on Akka 2.3.4
framework [25], which enables each FLOWPROPHET module
to communicate asynchronously and concurrently at low over-
head. Besides, to export DCF intrinsic information, we have
also implemented the APIs for the master and workers of Spark
1.0.0 and Hadoop 0.20.2.

Event Definition Trigger Condition
newStageEvent(stageID, childStageID) a new stage is created
stageStartEvent(List[task], stageID) a stage is beginning
stageFinishedEvent(stageID) a stage is finished

TABLE I: The required APIs for DCF master.

DAG Builder: The DAG Builder relies on the information
provided by DCFs to build a full DAG. DCF developers only
need to develop a set of simple interfaces providing primitive
events, which are outlined in Table I. Similar to the DAG
Builder, the Data Tracker also calls for notification of events
from the DCF worker.

DAGBuilder Handlers
newStageHandler(newStageEvent) ⇒ (currentStage, childStage)
stageStartHandler(stageStartEvent) ⇒ Event(List[task], List[stageID])
stageFinishedHandler(stageFinishedEvent) ⇒ Event(stageID)

TABLE II: The DAG Builder event handlers.

When a new stage is created in DCF, a newStageEvent
will be raised. The DAG Builder obtains the new stage ID and
its child stage ID. By handlers defined in Table II, the DAG
Builder constructs a full DAG from all the collected pairs of
parent and child stages.



DCFs process stages in a depth-first-traversal order, and
traffic does not always take place between two consecutive
stages. To provide accurate prediction, it is necessary to check
the data dependency between current stage and next stage. For
example, in Figure 1 job #n, traffic only happens at following
three moments: after stage 2 and stage 3 both complete, after
stage 5 completes, and after stage 1 and stage 4 both complete.

Furthermore, the stageStartEvent contains a list of
tasks and the stage ID. In each task, the executor_ID is
where the task to be executed; the partition_ID indicates
the data partition that the task will fetch; the func is a set of
nested procedures, which could be executed independently.

Data Aggregator: To manage all the Data Trackers, we place
a Data Aggregator on the master, which organizes partition
status from Data Trackers and exports a query interface for
the Flow Calculator (Table III).

DataAggregator Methods Caller
query(List[partitionID, stageID]) ⇒ List[(location, size)] FlowCalculator

TABLE III: The Data Aggregator API.

When the Data Aggregator receives a stage ID from the
DAG Builder, it will broadcast the stage ID to all the Data
Trackers. Each Data Tracker then replies with a list of data
partition status for the stage ID. Then the Data Aggregator
will build a HashMap to cache these data partition status with
the stage ID as the key. Besides, the Data Aggregator will
append each data partition status with a location field, which
is the IP address or hostname of the worker that keeps the data
partition.

In DCFs, there could be thousands of workers or more,
which means that there are the same number of Data Trackers.
Leveraging the Actor Model, all the messages sent from
the Data Trackers actors are placed in the mailbox of the
Data Aggregator actor. Then the Data Aggregator processes
messages in an asynchronous, non-blocking way.

Once the Data Aggregator receives a query request from
the Flow Calculator, it will reply with a list of location and
size for each data partition matching the stage ID.

Data Tracker: Similar with the DAG Builder relying on
primitive information from the DCF master, a Data Tracker
receives and records event messages from the DCF worker.
The event message is defined in Table IV.

Event Definition Trigger Condition
taskFailureEvent(taskID, stageID, partitionID) a task is failed
taskFinishedEvent(stageID, partitionID, size) a task is finished

TABLE IV: The required APIs for DCF worker.

The computation takes place on each worker in DCFs,
i.e., the func encapsulated by each task will be extracted
and executed by executors. In general, the computation results
will be written back to the local disk (e.g., Hadoop), or for
high performance, in local memory (e.g., Spark). Besides, most
DCFs designed to be fault-tolerant, and they only attempt re-
execution of failed tasks for limited times. To predict extra
flows generated by tasks re-execution, Data Tracker needs to be
notified of failed tasks. It is simple to implement the required

APIs by adding less than 50 lines of code in DCF task life-
cycle context.

The Data Tracker constructs a HashMap with the stage
ID as the key, and a list of partition IDs and sizes as the
value. The Data Tracker will update the HashMap when the
taskFinishedEvent is raised by the DCF interface. Then,
when the Data Aggregator requests status of data partitions
of a stage ID, the Data Tracker then replies with a list, in
which each piece of data partition is recorded as stage_ID,
partition_ID and size.

DataTracker Methods Caller
query(stageID) ⇒ List[(stageID, partitionID, size)] DataAggregator

TABLE V: The Data Tracker API.

Flow Calculator: The Flow Calculator is the converging point
of knowledge on time dependency and data dependency, and
it calculates the flow information (source, destination,
flow_size), and estimates the flow establish_time.

Flow information: Once the DAG Builder captures the
stageStartEvent, it will deliver two lists to the Flow
Calculator. One list contains the tasks that are just starting, the
other contains all the parent stage IDs. By traversing the list
of tasks, the Flow Calculator queries the Data Aggregator for
the location and size related to a data partition that each task
will fetch. Thus, the location of data partition is the source,
the executor_ID indicates the destination, and the
size of data partition is the traffic volume flow_size. Since
the predicted flows will not take place until all the tasks on
the master are delivered to the designated workers, the Flow
Calculator will most likely export flow information in advance.
As is shown in our experiments in Section IV, FLOWPROPHET
can predict flow information strictly ahead of time.

Flow establish time: FLOWPROPHET is able to calculate
flow information of the next stage ahead of time. After the
current stage is completed, DCFs usually do a relatively fixed
number of operations to start the next stage, and we refer this
period of time as flow establish_time. For a specific
application, the establish_time is likely to fall within
a range. This is confirmed by our experiments (Figure 7),
which establish_times all exhibit heavy-tailed distribu-
tion in different DCFs. The majority of establish_times
concentrate in the small range with some occasional outliers
(e.g. network congestion).

However, different configurations of DCFs and applications
may result in different the establish_times, and it is
difficult to accurately predict for all DCFs and all applica-
tions. Therefore, we introduce an adaptive algorithm to infer
establish_time of flows of different applications.

For an application, the algorithm tracks the average
and variance of establish_time of the previous flows
via the exponentially weighted moving average (EWMA)
method [26]. EWMA has less lag than naive moving average
method, and is more sensitive to recent establish_times,
which fits our goal of tracking current applications. We de-
scribe the estimation method as follows:

Let ti be the expected establish time in the ith stage and σ
the standard deviation. It follows that the establish_time



of the next flow will most likely3 fall between ti ± 2σ.
FLOWPROPHET uses the well-known set of formulas [27] to
perform online update of mean (ti) and standard variance (σ):

ti = ατ + (1− α)ti−1

σ2
n = (1− α)(Sn−1 + α(τ − ti−1)

2)

where τ is the latest measured establish time, and Sn is an
accumulated variable

Sn = (1− α)Sn−1 + α(τ − ti)(τ − ti−1)

α is the smoothing factor (FLOWPROPHET uses α = 0.15 for
Spark and α = 0.5 for Hadoop).

D. Discussion

FLOWPROPHET offers simple, flexible, and fine grained
interfaces to predict flow information, and they are able to
adapt to a wide range of scenarios. Here we remark on some
specific cases:
Ambiguous DAG : Under some configurations of DCFs, there
might be no clear boundary between stages. For example,
Hadoop reducers can be configured to start shuffling before
all mappers finish. Such configuration will not affect the pre-
dictions of FLOWPROPHET, because the Data Tracker reports
to Data Aggregator whenever a task finishes. FLOWPROPHET
is able to predict upcoming flows when the requested data
partitions of new-launched tasks are ready.
Speculative task assignment : To address the heterogeneity
of data center and data skewness, DCFs could be configured
to execute copies of a task on multi-node and accept the
earliest output, which introduces uncertainty to identify source
or destination of flows. We note that redundant task copies will
not interfere with FLOWPROPHET’s prediction since the Data
Aggregator only records the first arrived report for the same
data partition.
Multi-tenancy : As a prototype, FLOWPROPHET currently
does not support multi-tenancy, and it is part of our on-going
effort. To enable FLOWPROPHET in a multi-tenant cluster, we
plan to extend the argument lists of FLOWPROPHET APIs with
user IDs (stages, jobs, tasks, and flows will be tagged with a
user ID). Supporting multi-tenancy does not change the flow
prediction mechanisms of FLOWPROPHET.

IV. EVALUATION

Testbed: We have implemented FLOWPROPHET and deployed
it on our 37-server testbed (master node × 1, worker node ×
36). The 37 physical servers are Dell PowerEdge R320 with a
quad core Intel Xeons E5-1410 2.8GHz CPU, 24GB DDR3
memory, 500GB hard disk and one Broadcom NetXtreme
Gigabit Ethernet NIC. The OS is Debian 6.0 64-bit version
with kernel 2.6.32-5. We deployed FLOWPROPHET on Spark
1.0.0 and Hadoop 0.20.2 with Oracle JDK 1.7.0 25.

For accurate time measurement in a distributed setting, we
deploy NTP [28] on the master node and worker nodes to
synchronize system clock. We run TShark 1.2.11 on each node
to capture all TCP packets, and save the captured files for
further analysis.

3with probability of 95% assuming normal distribution of
establish_time

Benchmarks: In our experiments, we use following bench-
mark applications and configuration to evaluate FLOW-
PROPHET:
• WikipediaPageRank, is a PageRank algorithm instance

using Wikipedia entries as input. We process 13G and 26G
Freebase-wiki-articles datasets [29] separately on our Spark
testbed.
• SparkPageRank, is also a standard PageRank algorithm
in Spark. Its input dataset is Freebase Triples [30]. The
Resource Description Framework (RDF) data is serialized
using the N-Triples format, compressed with Gzip and
encoded in UTF-8. We prepare a 40G RDF dataset for
SparkPageRank.
• Spark K-means, K-Means clustering is a popular clustering

algorithm that can be used to partition a dataset into
K clusters. The input dataset is Wikipedia Page Traffic
Statistics [31].
• Hadoop TeraSort, is a common Hadoop benchmark which

aims at testing the CPU/memory power of the cluster. It is
a standard Map/Reduce sort, except for a custom partitioner
that uses a sorted list of N −1 sampled keys that define the
key range for each reduce.
• Pi, is a Monte Carlo Method to calculate an approximation
to π. A parameter is used to setup the number of random
points. We run π calculation on both Spark and Hadoop.
• WordCount, this benchmark reads text files and counts how

often words occur. We prepared a 20G and a 40G dataset
for Spark and Hadoop, which contain 3,560,179,980 words
and 7,153,321,364 words respectively.

Summary of results: The main highlights of our results are
as follows:
• Time advance: FLOWPROPHET can predict flows strictly

ahead of time. In our experiments of WikipediaPageRank
with Spark, FLOWPROPHET achieves an average lead time
of 414.1ms on 13G dataset and 478ms on 26G dataset.
The lead time is higher for Hadoop applications: 12.3123s
for Hadoop TeraSort 10G dataset, and 7.7348s on Hadoop
WordCount 20G.
• Prediction accuracy: We conduct a set of experiments to
evaluate the accuracy on traffic volume. In all the exper-
iments such as Spark WikipediaPageRank, Spark PageR-
ank, Hadoop WordCount etc., the prediction accuracy of
FLOWPROPHET on source, destination and flow size reaches
almost 100%. For majority (85%-90%) of the flows in our
experiment, we can well predict their establish_time
intervals.
• Overhead and scalability: We measure the difference of

job completion times when FLOWPROPHET is enabled and
disabled. The experiments are conducted on different scales
of Spark and Hadoop clusters. We find the overhead FLOW-
PROPHET introduces is negligible—stably around 0.64%.
Furthermore, this small overhead maintains when the cluster
scale becomes larger.
• Benefits of FLOWPROPHET: In cooperation with a simple
network scheduler, FLOWPROPHET’s accurate flow predic-
tion can directly improve the average job completion time
by 12.52% for a Hadoop TeraSort 25G dataset on our 37-
server cluster.

Next we describe and explain the experiment details.



Prediction Time (16:18:22.365) Prediction Time (16:18:29.547)

ShuffleID#6ShuffleID#7

F
lo

w
(#

) 
in

 a
 S

h
u

ffl
e

0

1000

2000

3000

Time

16:18:25 16:18:30 16:18:35

Fig. 6: Time Advance of WikipediaPageRank-13G (Spark).

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Lead Time (s)

C
D

F

(a) Spark WikipediaPageRank-13G

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Lead Time (s)

C
D

F

(b) Spark WikipediaPageRank-26G

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Lead Time (s)

C
D

F

(c) Hadoop TeraSort-10G

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Lead Time (s)

C
D

F

(d) Hadoop WordCount-20G

Fig. 7: CDF of lead time.

Time advance: To calculate the lead time, we record the time
when FLOWPROPHET predicts flow information while running
the applications. After completion, we extract traffic timing
from TShark captured files and compare with the prediction
time.

Figure 6 presents the prediction time of two data shuffles
in the Spark WikipediaPageRank experiment on 13G dataset.
The red vertical line marks the time when FLOWPROPHET
outputs flow prediction. The blue horizontal lines represent
the actual transmission of flows in the shuffle. The start point
and end point are the start time and end time of the flow. It
demonstrates that our prediction is strictly ahead-of-time for
all the flows.

We plot the Cumulative Distribution Function (CDF)
of lead time in Figure 7. The lead time is defined as
(actual time − predict time). FLOWPROPHET predicts al-
most 100% flows ahead of time on Spark and Hadoop. For
Spark benchmark in Figure 7(a) and Figure 7(b), the lead time
range of 90% flows is from 200ms to 500ms. For Hadoop
benchmark in Figure 7(c) and Figure 7(d), the lead time range
is relatively loose compared to Spark, since the slow start
mechanism [19] may force reducers to fetch data before all
mappers finish. In addition, as Hadoop spends much more time

Actual Traffic

Predicted Traffic

V
o

lu
m

e
 (

M
B

)

0

200

400

600

800

1000

ShuffleID#3 ShuffleID#4 ShuffleID#5 ShuffleID#6

Fig. 8: Actual traffic vs. predicted traffic in
WikipediaPageRank-13G (Spark).

Actual Traffic

Predicted Traffic

V
o

lu
m

e
 (

M
B

)

0

200

400

600

800

1000

ShuffleID#3 ShuffleID#4 ShuffleID#5 ShuffleID#6

Fig. 9: Actual traffic vs. predicted traffic in
WikipediaPageRank-26G (Spark).

Actual Traffic

Predicted Traffic

V
o

lu
m

e
 (

G
B

)

0

5

10

15

Hadoop TeraSort-10G

Actual Traffic

Predicted Traffic

V
o

lu
m

e
 (

M
B

)

0

100

200

300

400

Hadoop WordCount-10G

Fig. 10: Actual traffic vs. predicted traffic (Hadoop).

to read and write data from disk while Spark visits data in
memory directly, FLOWPROPHET manages to achieve larger
lead time on Hadoop. The average lead time is 12.3123s and
7.7348s respectively for Hadoop TeraSort 10G dataset and
WordCount-20G dataset.

Prediction accuracy: We evaluate the prediction accuracy
of FLOWPROPHET by comparing the actual and predicted
traffic volumes. In the captured traces, we filter out control
messages from the DCF master to each worker and calculate
the actual traffic volume. Figure 8 and Figure 9 show traffic
volumes of four shuffles on the Spark cluster. In Figure 10, the
predicted and the actual traffic volumes are also very close on
the Hadoop cluster. We conclude that FLOWPROPHET achieves
high (almost 100%) accuracy in source, destination and flow
size predictions for both Spark and Hadoop.

Note that there might be very slight difference between the
actual traffic volume and predicted traffic volume, which can
be introduced by network control signaling, packet headers and
TCP retransmission. In general, tasks failures or data partition
lost will also cause a worker repetitively launches traffic, in
which case the actual traffic volume is slightly larger than the
predicted one.



Wikipedia

PageRank-26G

Wikipedia

PageRank-13G

Hadoop 

TeraSort-10G

Hadoop 

WordCount-20G

H
it
 R

a
te

 (
%

)

0

50

100

Fig. 11: Establish time prediction hit rate.

As shown above, FLOWPROPHET can accurately predict
flow sizes strictly beforehand. It will be more ideal if we can
estimate the time to the future when these flows will start.
We applied the adaptive algorithm in Section III-C to infer
the establish_time. We used α = 0.15 for Spark and
α = 0.5 for Hadoop. The hit rate of this estimation ranges
from 85% to 90% as shown in Figure 11, which means that
the majority of the flows come up in the time interval we
predicted. With such establish_time estimation, one can
further improve network provisioning.

Pure Spark

Spark with FlowProphet

Wikipedia

PageRank-13G

Wikipedia

PageRank-26G

SparkPi

-500M

SparkPi

-1000M

WordCount

-20G

WordCount

-40G

KMeans

-20G

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

0

50

100

150

200

Fig. 12: Job completion time on Spark (overhead test).

Pure Hadoop

Hadoop with FlowProphet

Hadoop with HadoopWatch

HadoopPi

-100M

HadoopPi

-500M

WordCount

-20G

WordCount

-40G
TeraSort-10G TeraSort-20G

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

0

50

100

150

200

Fig. 13: Job completion time on Hadoop (overhead test).

System overhead: We measure the job completion time
with and without FLOWPROPHET to illustrate the overhead
introduced by FLOWPROPHET. Under the two conditions, we
run each benchmark 10 times with different datasets. GNU
Time 1.7 is used to measure the job completion time. Figure 12
and Figure 13 showcase the maximum, mean and minimum
job completion times for Spark and Hadoop respectively. We
find that the extra time introduced by FLOWPROPHET is
negligible, because the implementation of FLOWPROPHET is
based on an event-driven and lightweight framework (i.e. Actor
Model). Furthermore, FLOWPROPHET usually calculates flow

Pure Hadoop

Hadoop with FlowProphet

OR on testbed

OR by projection

Number of Worker Nodes

J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

 (
s
)

0

50

100

150

O
v
e

rh
e

a
d

 R
a

ti
o

 (
%

)

0

1

2

10 15 20 25 30 35 40 45 50 55 60 65 70 75 ... n

Fig. 14: FLOWPROPHET scalability evalution on TeraSort-
10G (Hadoop).

Pure Spark

Spark with FlowProphet

OR on testbed

OR by projection

Number of Worker Nodes

J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

 (
s
)

0

100

200

300

400

O
v
e

rh
e

a
d

 R
a

ti
o

 (
%

)

0

1

2

10 15 20 25 30 35 40 45 50 55 60 65 70 75 ... n

Fig. 15: FLOWPROPHET scalability evaluation on
WikipediaPageRank-26G (Spark).

information after a stage is finished and before all tasks are
started, at which time there is no task running in the cluster.
Thus, FLOWPROPHET mostly exploits the idle computation
resource of the cluster and dose not directly compete with
computing jobs for resources.

In Figure 13, we included HapdoopWatch [18] as well,
which also introduces little overhead as FLOWPROPHET. How-
ever, HapdoopWatch is a customized system to Hapdoop, while
FLOWPROPHET is general to all frameworks.

Because of the complexity of distributed computing en-
vironment, single-server performance metrics like CPU con-
sumption and memory footprint are volatile and inconsistent
over the entire cluster. Therefore, we instead use job comple-
tion time as a collective metric over the entire cluster to reflect
the overhead introduced by FLOWPROPHET.

Scalability: We run WikipediaPageRank-26G on the Spark
cluster and TeraSort-10G on the Hadoop cluster when the
cluster scales out (from 10 nodes to 35 nodes). We run 5
times for each condition (with or without FLOWPROPHET)
and calculate the average job completion time. In Figure 14
and Figure 15, as the number of workers increases, more
parallel computing resources are utilized and therefore the job
completion time decreases gradually.

The main overhead of FLOWPROPHET is introduced by
API calls during shifting stages. The overhead of API calls
increases by the number of workers and tasks. Since the



Original

Optimized

Average coflow completion time (s)
70 75 80 85 90 95 100 105 110 115 120

Original

Optimized

Average job completion time (s)
70 80 90 100 110 120 130 140

Fig. 16: Benefit with a simple network scheduler.

APIs are called discretely, it is hard to measure directly,
so we define a new metric, Overhead Ratio (OR), to eval-
uate the overhead of FLOWPROPHET. OR is defined as:
(Timeenabled − Timedisabled)/T imedisabled. We then plot
ORs as a function of the number of worker nodes to form
a polyline. We find that OR increases very slightly when
the cluster scales out. This trend showcases the scalability
of FLOWPROPHET, since the overhead of FLOWPROPHET is
inherently small and is insensitive to the growth of cluster
scale. As our testbed is small and only has 37 nodes, in
Figure 14 and Figure 15, we intentionally project the curves
to assess the overhead at larger scale.

Benefits of FLOWPROPHET to applications: To demonstrate
the utility of the predictions made by FLOWPROPHET, we
export the predicted flow information to a simple network
scheduler we implemented for Hadoop cluster running a
TeraSort-25G benchmark.

Specifically, in Hadoop, a reducer will not begin the reduce
task until all the dependent data on remote mappers has
been fetched. Thus, the flows fetching data for one task on
a reducer are barrier-synchronized. As defined in [23], they
form a coflow. By parsing the coflow information from FLOW-
PROPHET, the scheduler obtains the flow dependency, and
with this information, the scheduler can help a reducer shorten
waiting time and start the task earlier. Basically, the scheduler
can infer which dependent flow(s) of a coflow will finish late
from the paths and the volumes of incoming traffic, and assign
higher priority to these flows. With higher priority, the network
fabric will allocate more network resource (e.g. bandwidth,
priority queue, etc.) to these flows, so that they can finish and
the reducers can begin their computations earlier. In this way,
the coflow completion time and the job completion time will
be improved.

Even with such a simple scheduler, we have seen remark-
able improvement on both coflow completion time and job
completion time. As shown in Figure 16, with the information
predicted by FLOWPROPHET, the coflow completion time
reduces by 14.28% and the job completion reduces by 12.52%
on the evaluated Hadoop TeraSort-25G benchmark.

We note that the simple scheduler we implemented here
is far from optimal to fully exploit the benefits brought
by FLOWPROPHET. We also note that the latest work such
as Varys [7] and Baraat [8] require coflow (or task-aware)
information as input and FLOWPROPHET can feed accurate

input to them. Our next step is to incorporate FLOWPROPHET
to more advanced schedulers to benefit them.

V. RELATED WORK

Recently, data-parallel computing is popularized by various
frameworks (e.g., Hadoop [19], Dryad [2], Spark [3], and
CIEL [21] etc.), which provide simple and elegant interfaces
for programmers to process large dataset on commodity clus-
ter. Heavy load is thrown upon network infrastructures as a
consequence, and networking researchers have been exploring
methods to schedule and optimize network resources, so as
to accelerate job completion and enhance performance of
DCFs. D2TCP [32], pFabric [4], MCP [33], Baraat [8] and
Varys [7] leverage flow-based mechanisms and attempt to
minimize average completion time of flows or groups of flows
by exploiting flow size and deadline information provided by
the applications. Helios [9], c-Through [10] and OSA [11] try
to estimate aggregate application demands to enable dynamic
network resource allocation in terms of architectural bandwidth
provisioning. In addition, Hedera [13], MicroTE [14] and
D3 [15] make an effort to address the problem by traffic
engineering. Note that above approaches rely on obtaining the
traffic and flow information at application-level ahead of time.

To extract traffic information, traffic engineering solu-
tions [34, 35] analyze past statistics (e.g., end-host logs or
link traces), and estimate the traffic demand for the next
period. There are also proposals trying to monitor socket
buffers [10, 16] or counters in switches [9, 13] to gather
traffic measurement. However, these approaches are reactive,
and the accuracy of such solutions is an issue. FLOWPROPHET
proactively collects and utilizes application-level information,
and can provide accurate flow information ahead-of-time.

Various tracing and profiling toolkits have been proposed
towards extracting traffic information of Hadoop. X-Trace [36]
collects Hadoop cross-layer event traces for performance
diagnosis. HadoopWatch [18] exploits run-time file system
monitoring and parses Hadoop logs and meta-data to forecast
Hadoop traffic precisely. But HadoopWatch cannot cover re-
cent DCFs, because monitoring disk operations in file system
has become obsolete when more and more DCFs take advan-
tage of memory to cache data. FLOWPROPHET observes and
exploits a common theme in popular DCFs: DAG expression
of application logic is widely adopted by DCFs. With time
and data dependency from DAG, FLOWPROPHET is a general
framework to predict flow information for all DCFs.

VI. CONCLUSION

In this paper, we present FLOWPROPHET, a generic and
accurate method to predict flow information for large scale
DCFs. For this purpose, we summarize the common execu-
tion patterns of popular computing frameworks, and extract
DAG to obtain time and data dependencies from applica-
tions using these frameworks. With this guidance, we de-
sign FLOWPROPHET, a flow information prediction frame-
work for DCFs. We make sure that the application pro-
gramming interfaces (APIs) of FLOWPROPHET is general, so
that existing and future computing frameworks can readily
deploy FLOWPROPHET to generate accurate flow predictions.
We implemented FLOWPROPHET on both Hadoop and Spark,



and achieved almost 100% prediction accuracy in source,
destination and flow size, with time advance and minimal cost.
We also show that simple network optimizations with ahead-
of-time flow predictions can provide substantial improvement
in application performance. The job completion time of a
Hadoop TeraSort-25G benchmark is reduced by 12.52% on
our 37-server cluster with a simple scheduler cooperating
with FLOWPROPHET.

VII. ACKNOWLEDGMENTS

This work was supported by HKRGC-ECS 26200014,
National Basic Research Program of China (973) under
2011CB302601, National R&D Infrastructure and Facility
Development Program (No. 2013FY111900), NRF Singapore
CREATE Program E2S2, Huawei Noah’s Ark Lab and Shang-
hai Key Laboratory of Scalable Computing and Systems.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the
2nd USENIX conference on Hot topics in cloud computing.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 435–446.

[5] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 127–138, 2012.

[6] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R.
Dogar, “Friends, not foes: synthesizing existing transport strategies for
data center networks,” in Proceedings of the 2014 ACM conference on
SIGCOMM. ACM, 2014, pp. 491–502.

[7] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proceedings of the ACM SIGCOMM 2014 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, ser. ACM SIGCOMM’14, 2014.

[8] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-
ized task-aware scheduling for data center networks,” in Proceedings of
the 2014 ACM conference on SIGCOMM. ACM, 2014, pp. 431–442.

[9] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 339–
350, 2011.

[10] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
in ACM SIGCOMM Computer Communication Review, vol. 40, no. 4.
ACM, 2010, pp. 327–338.

[11] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “Osa: An optical switching architecture for data
center networks with unprecedented flexibility,” Networking, IEEE/ACM
Transactions on, vol. 22, no. 2, pp. 498–511, April 2014.

[12] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in Proceedings of the ACM
SIGCOMM 2013 Conference, ser. SIGCOMM ’13. New York, NY,
USA: ACM, 2013, pp. 447–458.

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies.
ACM, 2011, p. 8.

[15] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIG-
COMM Computer Communication Review, vol. 41, no. 4. ACM, 2011,
pp. 50–61.

[16] G. Ingersoll, “Introducing apache mahout,” Scalable, commercial-
friendly machine learning for building intelligent applications. IBM,
2009.

[17] H. H. Bazzaz, M. Tewari, G. Wang, G. Porter, T. S. E. Ng, D. G.
Andersen, M. Kaminsky, M. A. Kozuch, and A. Vahdat, “Switching
the optical divide: Fundamental challenges for hybrid electrical/optical
datacenter networks,” in Proceedings of the 2Nd ACM Symposium on
Cloud Computing, ser. SOCC ’11, 2011.

[18] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu, “Hadoop-
watch: A first step towards comprehensive traffic forecasting in cloud
computing,” in INFOCOM, 2014 Proceedings IEEE, April 2014.

[19] A. Hadoop, “Hadoop,” http://hadoop.apache.org, 2009.
[20] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[21] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand, “Ciel: A universal execution engine for
distributed data-flow computing.” in NSDI, vol. 11, 2011, pp. 9–9.

[22] D. G. Murray and S. Hand, “Scripting the cloud with skywriting,”
Proceedings of HotCloud, no. 3, 2010.

[23] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, ser. HotNets-XI. New York, NY, USA: ACM,
2012, pp. 31–36.

[24] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in Proceedings of the 3rd interna-
tional joint conference on Artificial intelligence. Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245.

[25] Akka, “Akka framework,” http://akka.io, 2014.
[26] J. S. Hunter, “The exponentially weighted moving average.” J. QUAL-

ITY TECHNOL., vol. 18, no. 4, pp. 203–210, 1986.
[27] B. Welford, “Note on a method for calculating corrected sums of squares

and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.
[28] D. L. Mills, “Network time protocol (ntp),” Network, 1985.
[29] M. Technologies, “Freebase wikipedia extraction (wex),” http://

download.freebase.com/wex/, 2010.
[30] Google, “Freebase data dumps,” https://developers.google.com/

freebase/data, 2014.
[31] P. Skomoroch, “Wikipedia traffic statistics dataset,” http://aws.amazon.

com/datasets/2596, 2009.
[32] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter

tcp (d2tcp),” in Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, ser. SIGCOMM ’12. New York, NY, USA:
ACM, 2012, pp. 115–126.

[33] L. Chen, S. Hu, K. Chen, H. Wu, and D. H. K. Tsang, “Towards
minimal-delay deadline-driven data center tcp,” in Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, ser. HotNets-XII.
New York, NY, USA: ACM, 2013, pp. 21:1–21:7.

[34] A. Feldmann, N. Kammenhuber, O. Maennel, B. Maggs, R. De Prisco,
and R. Sundaram, “A methodology for estimating interdomain web
traffic demand,” in Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement. ACM, 2004, pp. 322–335.

[35] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with
estimated traffic matrices,” in Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement. ACM, 2003, pp. 248–258.

[36] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:
A pervasive network tracing framework,” in Proceedings of the 4th
USENIX conference on Networked systems design & implementation.
USENIX Association, 2007, pp. 20–20.


